Full metadata record

DC Field Value Language
dc.contributor.authorLim, Ahyoun-
dc.contributor.authorKim, Junyoung-
dc.contributor.authorLee, Hye Jin-
dc.contributor.authorKim, Hyoung-Juhn-
dc.contributor.authorYoo, Sung Jong-
dc.contributor.authorJang, Jong Hyun-
dc.contributor.authorPark, Hee Young-
dc.contributor.authorSung, Yung-Eun-
dc.contributor.authorPark, Hyun S.-
dc.date.accessioned2024-01-19T16:33:41Z-
dc.date.available2024-01-19T16:33:41Z-
dc.date.created2021-09-02-
dc.date.issued2020-09-05-
dc.identifier.issn0926-3373-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118135-
dc.description.abstractA unitized regenerative fuel cell (URFC), an electrochemical device operated in both water electrolysis (WE) and fuel cell (FC) modes, is a promising technology in interconverting renewable electricity and chemical fuels within a compact system. However, Proton-exchange membrane-based URFCs usually employ a significant amount of precious metal catalysts, e.g., up to 4 mg((Pt+IrO2)) cm(-2), to achieve high efficiency in round-trip operations. Here, we present a PEM-URFC electrode that uses only 0.8 mg((Pt+Ir)) cm(-2) without compromising the performance of URFC. IrO2-shells (70 nm) layered upon hemispherical Pt particles (Pt@IrO2) are formed using sequential electrodeposition over Ti-felt electrodes. A 100 % improvement in WE compared to performance without Pt supports and superior mass activity (44 A mg(Ir)(-1) at 2 V-cell) with an insignificant degradation rate of 155 mu V h(-1) at 0.4 A cm(-2) are demonstrated. In addition, high round-trip efficiency of 49 % at 0.4 A cm(-2) in URFC is achieved.-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.subjectGAS-DIFFUSION LAYER-
dc.subjectOXYGEN REDUCTION REACTION-
dc.subjectENERGY-STORAGE-
dc.subjectIRIDIUM OXIDE-
dc.subjectEVOLUTION REACTION-
dc.subjectMASS-TRANSPORT-
dc.subjectELECTROCATALYSTS-
dc.subjectELECTRODES-
dc.subjectFABRICATION-
dc.subjectCORROSION-
dc.titleLow-loading IrO2 supported on Pt for catalysis of PEM water electrolysis and regenerative fuel cells-
dc.typeArticle-
dc.identifier.doi10.1016/j.apcatb.2020.118955-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAPPLIED CATALYSIS B-ENVIRONMENTAL, v.272-
dc.citation.titleAPPLIED CATALYSIS B-ENVIRONMENTAL-
dc.citation.volume272-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000533148700035-
dc.identifier.scopusid2-s2.0-85083704336-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusGAS-DIFFUSION LAYER-
dc.subject.keywordPlusOXYGEN REDUCTION REACTION-
dc.subject.keywordPlusENERGY-STORAGE-
dc.subject.keywordPlusIRIDIUM OXIDE-
dc.subject.keywordPlusEVOLUTION REACTION-
dc.subject.keywordPlusMASS-TRANSPORT-
dc.subject.keywordPlusELECTROCATALYSTS-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusCORROSION-
dc.subject.keywordAuthorProton exchange membrane water electrolysis-
dc.subject.keywordAuthorUnitized regenerative fuel cell-
dc.subject.keywordAuthorElectrodeposition-
dc.subject.keywordAuthorOxygen evolution catalysts-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE