Full metadata record

DC Field Value Language
dc.contributor.authorKim, J.-
dc.contributor.authorKim, Y.-
dc.contributor.authorLee, J. M.-
dc.contributor.authorKim, S. -J.-
dc.date.accessioned2024-01-19T16:33:44Z-
dc.date.available2024-01-19T16:33:44Z-
dc.date.created2021-09-02-
dc.date.issued2020-09-03-
dc.identifier.issn0013-5194-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118138-
dc.description.abstractAccurate prediction of intended gait speed is crucial for facilitating volitional muscle activity during robot-assisted gait training. Considering that most patients find it difficult to perform gait at relatively high speeds, it is also imperative that the prediction model performs well at slow gait speed. Furthermore, ample time for signal processing should be given prior to robot assistance such that the patient is not subjected to unwanted resistance or lag. Here, the authors propose to predict the intended speed of the contralateral limb via kinematics of the current swing limb. Three lower-limb positions were evaluated using an inertial measurement unit sensor during treadmill gait sessions. The results suggest that the authors&apos; model performs well even during slow gait speeds (<= 2 km/h) with R-2 values as high as 0.86.-
dc.languageEnglish-
dc.publisherINST ENGINEERING TECHNOLOGY-IET-
dc.subjectTREADMILL WALKING-
dc.subjectSTROKE-
dc.titleIntended gait speed prediction via swing limb kinematics applicable for patients with slow gait-
dc.typeArticle-
dc.identifier.doi10.1049/el.2020.1245-
dc.description.journalClass1-
dc.identifier.bibliographicCitationELECTRONICS LETTERS, v.56, no.18, pp.911 - 913-
dc.citation.titleELECTRONICS LETTERS-
dc.citation.volume56-
dc.citation.number18-
dc.citation.startPage911-
dc.citation.endPage913-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000570088300003-
dc.identifier.scopusid2-s2.0-85091422153-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusTREADMILL WALKING-
dc.subject.keywordPlusSTROKE-
dc.subject.keywordAuthormedical robotics-
dc.subject.keywordAuthorkinematics-
dc.subject.keywordAuthorsensors-
dc.subject.keywordAuthorgait analysis-
dc.subject.keywordAuthorelectromyography-
dc.subject.keywordAuthormedical signal processing-
dc.subject.keywordAuthorintended gait speed prediction-
dc.subject.keywordAuthorswing limb kinematics-
dc.subject.keywordAuthorvolitional muscle activity-
dc.subject.keywordAuthorrobot-assisted gait training-
dc.subject.keywordAuthorprediction model-
dc.subject.keywordAuthorslow gait speed-
dc.subject.keywordAuthorrobot assistance-
dc.subject.keywordAuthorcontralateral limb-
dc.subject.keywordAuthorcurrent swing limb-
dc.subject.keywordAuthorlower-limb positions-
dc.subject.keywordAuthortreadmill gait sessions-
dc.subject.keywordAuthorsignal processing-
dc.subject.keywordAuthorinertial measurement unit sensor-
dc.subject.keywordAuthorEMG-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE