Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hong, Yu-Rim | - |
dc.contributor.author | Kim, Kang Min | - |
dc.contributor.author | Ryu, Jeong Ho | - |
dc.contributor.author | Mhin, Sungwook | - |
dc.contributor.author | Kim, Jungin | - |
dc.contributor.author | Ali, Ghulam | - |
dc.contributor.author | Chung, Kyung Yoon | - |
dc.contributor.author | Kang, Sukhyun | - |
dc.contributor.author | Han, HyukSu | - |
dc.date.accessioned | 2024-01-19T16:34:23Z | - |
dc.date.available | 2024-01-19T16:34:23Z | - |
dc.date.created | 2021-09-05 | - |
dc.date.issued | 2020-09 | - |
dc.identifier.issn | 1616-301X | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/118173 | - |
dc.description.abstract | The development of earth-abundant and efficient oxygen evolution reaction (OER) electrocatalysts is necessary for green hydrogen production. The preparation of efficient OER electrocatalysts requires both the adsorption sites and charge transfer on the catalyst surface to be suitably engineered. Herein, the design of an electrocatalyst is reported with significantly enhanced water oxidation performance via dual-phase engineering, which displays a high number of adsorption sites and facile charge transfer. More importantly, a simple chemical etching process enables the formation of a highly metallic transition boride phase in conjunction with the transition metal hydroxide phase with abundant adsorption sites available for the intermediates formed in the OER. In addition, computational simulations are carried out to demonstrate the water oxidation mechanism and the real active sites in this engineered material. This research provides a new material design strategy for the preparation of high-performance OER electrocatalysts. | - |
dc.language | English | - |
dc.publisher | WILEY-V C H VERLAG GMBH | - |
dc.subject | OXYGEN EVOLUTION | - |
dc.subject | CATALYSTS | - |
dc.subject | EFFICIENT | - |
dc.title | Dual-Phase Engineering of Nickel Boride-Hydroxide Nanoparticles toward High-Performance Water Oxidation Electrocatalysts | - |
dc.type | Article | - |
dc.identifier.doi | 10.1002/adfm.202004330 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | ADVANCED FUNCTIONAL MATERIALS, v.30, no.38 | - |
dc.citation.title | ADVANCED FUNCTIONAL MATERIALS | - |
dc.citation.volume | 30 | - |
dc.citation.number | 38 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000550664900001 | - |
dc.identifier.scopusid | 2-s2.0-85088288730 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.relation.journalWebOfScienceCategory | Physics, Condensed Matter | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | OXYGEN EVOLUTION | - |
dc.subject.keywordPlus | CATALYSTS | - |
dc.subject.keywordPlus | EFFICIENT | - |
dc.subject.keywordAuthor | dual phase | - |
dc.subject.keywordAuthor | electrocatalyst | - |
dc.subject.keywordAuthor | oxygen evolution reaction | - |
dc.subject.keywordAuthor | phase engineering | - |
dc.subject.keywordAuthor | water splitting | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.