Full metadata record

DC Field Value Language
dc.contributor.authorHong, Yu-Rim-
dc.contributor.authorKim, Kang Min-
dc.contributor.authorRyu, Jeong Ho-
dc.contributor.authorMhin, Sungwook-
dc.contributor.authorKim, Jungin-
dc.contributor.authorAli, Ghulam-
dc.contributor.authorChung, Kyung Yoon-
dc.contributor.authorKang, Sukhyun-
dc.contributor.authorHan, HyukSu-
dc.date.accessioned2024-01-19T16:34:23Z-
dc.date.available2024-01-19T16:34:23Z-
dc.date.created2021-09-05-
dc.date.issued2020-09-
dc.identifier.issn1616-301X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118173-
dc.description.abstractThe development of earth-abundant and efficient oxygen evolution reaction (OER) electrocatalysts is necessary for green hydrogen production. The preparation of efficient OER electrocatalysts requires both the adsorption sites and charge transfer on the catalyst surface to be suitably engineered. Herein, the design of an electrocatalyst is reported with significantly enhanced water oxidation performance via dual-phase engineering, which displays a high number of adsorption sites and facile charge transfer. More importantly, a simple chemical etching process enables the formation of a highly metallic transition boride phase in conjunction with the transition metal hydroxide phase with abundant adsorption sites available for the intermediates formed in the OER. In addition, computational simulations are carried out to demonstrate the water oxidation mechanism and the real active sites in this engineered material. This research provides a new material design strategy for the preparation of high-performance OER electrocatalysts.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.subjectOXYGEN EVOLUTION-
dc.subjectCATALYSTS-
dc.subjectEFFICIENT-
dc.titleDual-Phase Engineering of Nickel Boride-Hydroxide Nanoparticles toward High-Performance Water Oxidation Electrocatalysts-
dc.typeArticle-
dc.identifier.doi10.1002/adfm.202004330-
dc.description.journalClass1-
dc.identifier.bibliographicCitationADVANCED FUNCTIONAL MATERIALS, v.30, no.38-
dc.citation.titleADVANCED FUNCTIONAL MATERIALS-
dc.citation.volume30-
dc.citation.number38-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000550664900001-
dc.identifier.scopusid2-s2.0-85088288730-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusOXYGEN EVOLUTION-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordPlusEFFICIENT-
dc.subject.keywordAuthordual phase-
dc.subject.keywordAuthorelectrocatalyst-
dc.subject.keywordAuthoroxygen evolution reaction-
dc.subject.keywordAuthorphase engineering-
dc.subject.keywordAuthorwater splitting-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE