Full metadata record

DC Field Value Language
dc.contributor.authorLee, Se A.-
dc.contributor.authorKim, Jin-
dc.contributor.authorLee, Jeon Mi-
dc.contributor.authorHong, Yu-Jin-
dc.contributor.authorKim, Ig-Jae-
dc.contributor.authorLee, Jong Dae-
dc.date.accessioned2024-01-19T16:34:32Z-
dc.date.available2024-01-19T16:34:32Z-
dc.date.created2021-09-02-
dc.date.issued2020-09-
dc.identifier.issn1531-7129-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118182-
dc.description.abstractObjectives: This study aimed to demonstrate the application of our automated facial recognition system to measure facial nerve function and compare its effectiveness with other conventional systems and provide a preliminary evaluation of deep learning-facial grading systems. Study Design: Retrospective, observational. Setting: Tertiary referral center, hospital. Patients: Facial photos taken from 128 patients with facial paralysis and two persons with no history of facial palsy were analyzed. Intervention: Diagnostic. Main Outcome Measures: Correlation with Sunnybrook (SB) and House-Brackmann (HB) grading scales. Results: Our results had good reliability and correlation with other grading systems (r = 0.905 and 0.783 for Sunnybrook and HB grading scales, respectively), while being less time-consuming than Sunnybrook grading scale. Conclusions: Our objective method shows good correlation with both Sunnybrook and HB grading systems. Furthermore, this system could be developed into an application for use with a variety of electronic devices, including smartphones and tablets.-
dc.languageEnglish-
dc.publisherLIPPINCOTT WILLIAMS & WILKINS-
dc.subjectRELIABILITY-
dc.subjectSUNNYBROOK-
dc.titleAutomatic Facial Recognition System Assisted-facial Asymmetry Scale Using Facial Landmarks-
dc.typeArticle-
dc.identifier.doi10.1097/MAO.0000000000002735-
dc.description.journalClass1-
dc.identifier.bibliographicCitationOTOLOGY & NEUROTOLOGY, v.41, no.8, pp.1140 - 1148-
dc.citation.titleOTOLOGY & NEUROTOLOGY-
dc.citation.volume41-
dc.citation.number8-
dc.citation.startPage1140-
dc.citation.endPage1148-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000588497000037-
dc.identifier.scopusid2-s2.0-85096080200-
dc.relation.journalWebOfScienceCategoryClinical Neurology-
dc.relation.journalWebOfScienceCategoryOtorhinolaryngology-
dc.relation.journalResearchAreaNeurosciences & Neurology-
dc.relation.journalResearchAreaOtorhinolaryngology-
dc.type.docTypeArticle-
dc.subject.keywordPlusRELIABILITY-
dc.subject.keywordPlusSUNNYBROOK-
dc.subject.keywordAuthorAutonomic facial nerve grading system-
dc.subject.keywordAuthorFacial nerve paralysis-
dc.subject.keywordAuthorFacial asymmetry scale-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE