Full metadata record

DC Field Value Language
dc.contributor.authorShin, Hyeon-Ji-
dc.contributor.authorHwang, Jang-Yeon-
dc.contributor.authorKwon, Hyun Jung-
dc.contributor.authorKwak, Won-Jin-
dc.contributor.authorKim, Sang-Ok-
dc.contributor.authorKim, Hyung-Seok-
dc.contributor.authorJung, Hun-Gi-
dc.date.accessioned2024-01-19T16:34:42Z-
dc.date.available2024-01-19T16:34:42Z-
dc.date.created2021-09-02-
dc.date.issued2020-09-
dc.identifier.issn2168-0485-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118193-
dc.description.abstractOwing to the high theoretical capacity, low operating potentials, and natural abundance, silicon (Si) is considered as one of the most promising anode materials for lithium-ion batteries. However, a large volume change during alloying-dealloying often results in pulverization, electrical contact loss, and unstable solid-electrolyte interphase (SEI) formation, leading to rapid capacity fading. We present a rational encapsulation strategy of a silicon-carbon (Si-C) composite as a high-performance anode material for lithium-ion batteries (LIBs). The Si-C composite material is prepared via a one-pot hydrothermal method by using silicon nanoparticles modified using an etching route and sucrose as a carbon precursor. The proposed Si-C composite material has a meso-macroporous structure and contains a large weight fraction of silicon nanoparticles (40 wt %) encapsulated in a micrometric carbon sphere (similar to 3 mu m). In the composite material, the carbon framework tightly encapsulates the silicon nanoparticles to the interior of the particle, which not only provides electrical conductivity but also decreases the stress/strain of the material during the alloying-dealloying process. The material demonstrates high initial capacity of 1300 mAh g(-1), excellent capacity retention of 90% after 200 cycles, and fast charging-discharging capability within 12 min. We believe that the proposed encapsulation strategy here will be helpful in developing a highenergy and low-cost Si-C composite anode.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleSustainable Encapsulation Strategy of Silicon Nanoparticles in Microcarbon Sphere for High-Performance Lithium-Ion Battery Anode-
dc.typeArticle-
dc.identifier.doi10.1021/acssuschemeng.0c04828-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Sustainable Chemistry & Engineering, v.8, no.37, pp.14150 - 14158-
dc.citation.titleACS Sustainable Chemistry & Engineering-
dc.citation.volume8-
dc.citation.number37-
dc.citation.startPage14150-
dc.citation.endPage14158-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000575352800029-
dc.identifier.scopusid2-s2.0-85092791917-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryGreen & Sustainable Science & Technology-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusSOLID-ELECTROLYTE INTERPHASE-
dc.subject.keywordPlusELECTROCHEMICAL PERFORMANCE-
dc.subject.keywordPlusCOMPOSITE ANODE-
dc.subject.keywordPlusHIGH-ENERGY-
dc.subject.keywordPlusFLUOROETHYLENE CARBONATE-
dc.subject.keywordPlusCATHODE MATERIALS-
dc.subject.keywordPlusLI-
dc.subject.keywordPlusNANOCOMPOSITE-
dc.subject.keywordPlusFRAMEWORK-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordAuthorLi-ion batteries-
dc.subject.keywordAuthorHydrothermal synthesis-
dc.subject.keywordAuthorSilicon anode-
dc.subject.keywordAuthorEncapsulation-
dc.subject.keywordAuthorHigh energy-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE