Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kwon, H. Y. | - |
dc.contributor.author | Yoon, H. G. | - |
dc.contributor.author | Lee, C. | - |
dc.contributor.author | Chen, G. | - |
dc.contributor.author | Liu, K. | - |
dc.contributor.author | Schmid, A. K. | - |
dc.contributor.author | Wu, Y. Z. | - |
dc.contributor.author | Choi, J. W. | - |
dc.contributor.author | Won, C. | - |
dc.date.accessioned | 2024-01-19T17:00:35Z | - |
dc.date.available | 2024-01-19T17:00:35Z | - |
dc.date.created | 2021-09-02 | - |
dc.date.issued | 2020-09 | - |
dc.identifier.issn | 2375-2548 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/118231 | - |
dc.description.abstract | Understanding spin textures in magnetic systems is extremely important to the spintronics and it is vital to extrapolate the magnetic Hamiltonian parameters through the experimentally determined spin. It can provide a better complementary link between theories and experimental results. We demonstrate deep learning can quantify the magnetic Hamiltonian from magnetic domain images. To train the deep neural network, we generated domain configurations with Monte Carlo method. The errors from the estimations was analyzed with statistical methods and confirmed the network was successfully trained to relate the Hamiltonian parameters with magnetic structure characteristics. The network was applied to estimate experimentally observed domain images. The results are consistent with the reported results, which verifies the effectiveness of our methods. On the basis of our study, we anticipate that the deep learning techniques make a bridge to connect the experimental and theoretical approaches not only in magnetism but also throughout any scientific research. | - |
dc.language | English | - |
dc.publisher | AMER ASSOC ADVANCEMENT SCIENCE | - |
dc.subject | SPIN REORIENTATION TRANSITION | - |
dc.subject | REAL-SPACE OBSERVATION | - |
dc.subject | NEURAL-NETWORKS | - |
dc.subject | PHASE | - |
dc.title | Magnetic Hamiltonian parameter estimation using deep learning techniques | - |
dc.type | Article | - |
dc.identifier.doi | 10.1126/sciadv.abb0872 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | SCIENCE ADVANCES, v.6, no.39 | - |
dc.citation.title | SCIENCE ADVANCES | - |
dc.citation.volume | 6 | - |
dc.citation.number | 39 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000575531700015 | - |
dc.identifier.scopusid | 2-s2.0-85091806384 | - |
dc.relation.journalWebOfScienceCategory | Multidisciplinary Sciences | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | SPIN REORIENTATION TRANSITION | - |
dc.subject.keywordPlus | REAL-SPACE OBSERVATION | - |
dc.subject.keywordPlus | NEURAL-NETWORKS | - |
dc.subject.keywordPlus | PHASE | - |
dc.subject.keywordAuthor | deep learning | - |
dc.subject.keywordAuthor | Magnetic Hamiltonian | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.