Full metadata record

DC Field Value Language
dc.contributor.authorKwon, H. Y.-
dc.contributor.authorYoon, H. G.-
dc.contributor.authorLee, C.-
dc.contributor.authorChen, G.-
dc.contributor.authorLiu, K.-
dc.contributor.authorSchmid, A. K.-
dc.contributor.authorWu, Y. Z.-
dc.contributor.authorChoi, J. W.-
dc.contributor.authorWon, C.-
dc.date.accessioned2024-01-19T17:00:35Z-
dc.date.available2024-01-19T17:00:35Z-
dc.date.created2021-09-02-
dc.date.issued2020-09-
dc.identifier.issn2375-2548-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118231-
dc.description.abstractUnderstanding spin textures in magnetic systems is extremely important to the spintronics and it is vital to extrapolate the magnetic Hamiltonian parameters through the experimentally determined spin. It can provide a better complementary link between theories and experimental results. We demonstrate deep learning can quantify the magnetic Hamiltonian from magnetic domain images. To train the deep neural network, we generated domain configurations with Monte Carlo method. The errors from the estimations was analyzed with statistical methods and confirmed the network was successfully trained to relate the Hamiltonian parameters with magnetic structure characteristics. The network was applied to estimate experimentally observed domain images. The results are consistent with the reported results, which verifies the effectiveness of our methods. On the basis of our study, we anticipate that the deep learning techniques make a bridge to connect the experimental and theoretical approaches not only in magnetism but also throughout any scientific research.-
dc.languageEnglish-
dc.publisherAMER ASSOC ADVANCEMENT SCIENCE-
dc.subjectSPIN REORIENTATION TRANSITION-
dc.subjectREAL-SPACE OBSERVATION-
dc.subjectNEURAL-NETWORKS-
dc.subjectPHASE-
dc.titleMagnetic Hamiltonian parameter estimation using deep learning techniques-
dc.typeArticle-
dc.identifier.doi10.1126/sciadv.abb0872-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSCIENCE ADVANCES, v.6, no.39-
dc.citation.titleSCIENCE ADVANCES-
dc.citation.volume6-
dc.citation.number39-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000575531700015-
dc.identifier.scopusid2-s2.0-85091806384-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.type.docTypeArticle-
dc.subject.keywordPlusSPIN REORIENTATION TRANSITION-
dc.subject.keywordPlusREAL-SPACE OBSERVATION-
dc.subject.keywordPlusNEURAL-NETWORKS-
dc.subject.keywordPlusPHASE-
dc.subject.keywordAuthordeep learning-
dc.subject.keywordAuthorMagnetic Hamiltonian-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE