Full metadata record

DC Field Value Language
dc.contributor.authorLee, Eun-Sung-
dc.contributor.authorYoo, Joung E.-
dc.contributor.authorYoon, Du S.-
dc.contributor.authorKim, Sung D.-
dc.contributor.authorKim, Yongjoo-
dc.contributor.authorHwang, Soobin-
dc.contributor.authorKim, Dasol-
dc.contributor.authorJeong, Hyeong-Chai-
dc.contributor.authorKim, Won T.-
dc.contributor.authorChang, Hye J.-
dc.contributor.authorSuh, Hoyoung-
dc.contributor.authorKo, Dae-Hong-
dc.contributor.authorCho, Choonghee-
dc.contributor.authorChoi, Yongjoon-
dc.contributor.authorKim, Do H.-
dc.contributor.authorCho, Mann-Ho-
dc.date.accessioned2024-01-19T17:01:04Z-
dc.date.available2024-01-19T17:01:04Z-
dc.date.created2021-09-02-
dc.date.issued2020-08-13-
dc.identifier.issn2045-2322-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118259-
dc.description.abstractPhase-change memory utilizing amorphous-to-crystalline phase-change processes for reset-to-set operation as a nonvolatile memory has been recently commercialized as a storage class memory. Unfortunately, designing new phase-change materials (PCMs) with low phase-change energy and sufficient thermal stability is difficult because phase-change energy and thermal stability decrease simultaneously as the amorphous phase destabilizes. This issue arising from the trade-off relationship between stability and energy consumption can be solved by reducing the entropic loss of phase-change energy as apparent in crystalline-to-crystalline phase-change process of a GeTe/Sb2Te3 superlattice structure. A paradigm shift in atomic crystallography has been recently produced using a quasi-crystal, which is a new type of atomic ordering symmetry without any linear translational symmetry. This paper introduces a novel class of PCMs based on a quasicrystalline-to-approximant crystalline phase-change process, whose phase-change energy and thermal stability are simultaneously enhanced compared to those of the GeTe/Sb2Te3 superlattice structure. This report includes a new concept that reduces entropic loss using a quasicrystalline state and takes the first step in the development of new PCMs with significantly low phase-change energy and considerably high thermal stability.-
dc.languageEnglish-
dc.publisherNATURE PUBLISHING GROUP-
dc.subjectTHERMOELECTRIC PROPERTIES-
dc.subjectFILMS-
dc.subjectNUCLEI-
dc.titleQuasicrystalline phase-change memory-
dc.typeArticle-
dc.identifier.doi10.1038/s41598-020-70662-2-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSCIENTIFIC REPORTS, v.10, no.1-
dc.citation.titleSCIENTIFIC REPORTS-
dc.citation.volume10-
dc.citation.number1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000563546400005-
dc.identifier.scopusid2-s2.0-85089366632-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.type.docTypeArticle-
dc.subject.keywordPlusTHERMOELECTRIC PROPERTIES-
dc.subject.keywordPlusFILMS-
dc.subject.keywordPlusNUCLEI-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE