Full metadata record

DC Field Value Language
dc.contributor.authorKim, Jong Hwa-
dc.contributor.authorKim, Hyeongwoo-
dc.contributor.authorChoi, Wonchang-
dc.contributor.authorPark, Min-Sik-
dc.date.accessioned2024-01-19T17:01:10Z-
dc.date.available2024-01-19T17:01:10Z-
dc.date.created2021-09-02-
dc.date.issued2020-08-05-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118265-
dc.description.abstractHigh-Ni cathode materials with a layered structure generally suffer from structural instability induced by a highly reactive Ni component, especially at the surface. Crystalline LiNbO3, with excellent thermal stability and ionic conductivity, has the potential to considerably enhance the interfacial stability of these cathode materials. By optimizing the crystalline coating of bifunctional LiNbO3 on a high-Ni cathode material, we are able to improve cycle performance and rate capability by minimizing the direct exposure of Ni with electrolytes. Since a LiNbO3 coating layer directly affects electrochemical performance, we also focus on the correlation of LiNbO3 crystallinity with electrochemical behaviors of Li+ in the cathode materials. We show that the Li+ conducting behaviors are closely related to the crystallinity of LiNbO3. Highly crystalline LiNbO(3 )effectively suppresses the structural changes of the cathode materials by facilitating strain relaxation induced by repeated Li+ intercalation and deintercalation into and from the host structure. Moreover, it offers strong enhancement in mechanical and thermal stabilities at elevated temperatures above 60 degrees C. In this regard, this research provides a practical solution for successfully utilizing high-Ni layered cathode materials in commercial LIBs.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.subjectHIGH-ENERGY-
dc.subjectELECTROCHEMICAL PROPERTIES-
dc.subjectCONCENTRATION-GRADIENT-
dc.subjectCYCLING STABILITY-
dc.subjectHIGH-CAPACITY-
dc.subjectHIGH-POWER-
dc.subjectSPINEL-
dc.subjectRICH-
dc.subjectPERFORMANCE-
dc.subjectSTORAGE-
dc.titleBifunctional Surface Coating of LiNbO3 on High-Ni Layered Cathode Materials for Lithium-Ion Batteries-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.0c10799-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.12, no.31, pp.35098 - 35104-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume12-
dc.citation.number31-
dc.citation.startPage35098-
dc.citation.endPage35104-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000558792700060-
dc.identifier.scopusid2-s2.0-85089710697-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusHIGH-ENERGY-
dc.subject.keywordPlusELECTROCHEMICAL PROPERTIES-
dc.subject.keywordPlusCONCENTRATION-GRADIENT-
dc.subject.keywordPlusCYCLING STABILITY-
dc.subject.keywordPlusHIGH-CAPACITY-
dc.subject.keywordPlusHIGH-POWER-
dc.subject.keywordPlusSPINEL-
dc.subject.keywordPlusRICH-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordAuthoroxides-
dc.subject.keywordAuthorcathode-
dc.subject.keywordAuthorsurface coating-
dc.subject.keywordAuthorlithium-ion batteries-
dc.subject.keywordAuthorelectrochemistry-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE