Full metadata record

DC Field Value Language
dc.contributor.authorSkorikova, G.-
dc.contributor.authorRauber, D.-
dc.contributor.authorAili, D.-
dc.contributor.authorMartin, S.-
dc.contributor.authorLi, Q.-
dc.contributor.authorHenkensmeier, D.-
dc.contributor.authorHempelmann, R.-
dc.date.accessioned2024-01-19T17:01:42Z-
dc.date.available2024-01-19T17:01:42Z-
dc.date.created2021-09-05-
dc.date.issued2020-08-
dc.identifier.issn0376-7388-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118292-
dc.description.abstractProtic ionic liquids (PILs) based on the anion bis(trifluoromethanesulfonyl)imide were confined in polybenzimidazole (PBI) matrices. Quasi-solidified ionic liquid membranes (QSILMs) were fabricated and examined for mechanical and thermal stability. After doping in phosphoric acid (PA), the QSILMs exhibited conductivities of 30-60 mS cm(-1) at 180 degrees C. Fluorescence microscopy was used to investigate the structure of the composite PBI membranes. Membrane-electrode assemblies, fabricated with PA doped QSILMs, were tested in a single fuel cell and exhibited a performance increase with increasing temperature up to 200 degrees C. The best performance was obtained for the membrane electrode assembly containing 50 mol% of diethyl-methyl-ammonium bis(trifluoromethylsulfonyl)imide confined in the phosphoric acid doped PBI matrix with closed porosity. It reached 0.32 W cm(-2) at 200 degrees C and 900 mA cm(-2). The catalyst layer of the gas diffusion electrode impregnated with protic ionic liquid exhibited better long-term stability than the gas diffusion electrode impregnated with phosphoric acid within 100 h of operation at 200 degrees C and anhydrous conditions.-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.titleProtic ionic liquids immobilized in phosphoric acid -doped polybenzimidazole matrix enable polymer electrolyte fuel cell operation at 200 degrees C-
dc.typeArticle-
dc.identifier.doi10.1016/j.memsci.2020.118188-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF MEMBRANE SCIENCE, v.608-
dc.citation.titleJOURNAL OF MEMBRANE SCIENCE-
dc.citation.volume608-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000539295800007-
dc.identifier.scopusid2-s2.0-85087983084-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalWebOfScienceCategoryPolymer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaPolymer Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusCOMPOSITE MEMBRANES-
dc.subject.keywordPlusPHYSICOCHEMICAL PROPERTIES-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusDURABILITY-
dc.subject.keywordPlusCONDUCTIVITY-
dc.subject.keywordPlusAGGREGATION-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordAuthorPolybenzimidazole-
dc.subject.keywordAuthorProtic ionic liquid-
dc.subject.keywordAuthorHigh temperature fuel cells-
dc.subject.keywordAuthorImmobilization-
dc.subject.keywordAuthorPolymer composite membrane-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE