Full metadata record

DC Field Value Language
dc.contributor.authorYoo, Eunmin-
dc.contributor.authorMoon, Jun Hwan-
dc.contributor.authorJeon, Yoo Sang-
dc.contributor.authorKim, Yanghee-
dc.contributor.authorAhn, Jae-Pyoung-
dc.contributor.authorKim, Young Keun-
dc.date.accessioned2024-01-19T17:01:46Z-
dc.date.available2024-01-19T17:01:46Z-
dc.date.created2021-09-05-
dc.date.issued2020-08-
dc.identifier.issn1044-5803-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118297-
dc.description.abstractAs the design rule of the integrated circuits is decreasing to a 10 nm scale, the total electrical resistance of conventional Cu metallization increases rapidly. New conducting materials such as Co with shorter electron mean free paths, have gained significant attention and may replace Cu. Further, Co-W alloys are being considered as alternatives to replace the TaN/Ta barrier layers. However, limited studies have been carried out to elucidate electrical resistivity changes in nanoscale Co and its alloys depending on the size and composition. In this study, we report the variations in electrical resistivity and the microstructural evolution of a series of single Co nanowires (NWs) prepared using template-assisted electrochemical deposition, with diameters ranging from 16 to 130 nm. Besides, we investigate Co-W alloy NWs with W content ranging from 0 to 25.1 at.%. The Co NWs, in all diameter ranges, show substantially lower resistivity values compared to that in previous reports, where the value of an NW with a diameter of 16 nm is approximately 40 mu Omega.cm. The grain size also decreases as NW diameter decreases. Alloying W with Co NWs increases electrical resistivity. The 30 nm diameter Co-W alloy NW with 25.1 at.% W shows the highest electrical resistivity value at 170 mu Omega.cm. This value decreases as post-deposition annealing temperature increases.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE INC-
dc.subjectTHIN-FILMS-
dc.subjectNANOSTRUCTURE-
dc.subjectBARRIER-
dc.subjectALLOYS-
dc.titleElectrical resistivity and microstructural evolution of electrodeposited Co and Co-W nanowires-
dc.typeArticle-
dc.identifier.doi10.1016/j.matchar.2020.110451-
dc.description.journalClass1-
dc.identifier.bibliographicCitationMATERIALS CHARACTERIZATION, v.166-
dc.citation.titleMATERIALS CHARACTERIZATION-
dc.citation.volume166-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000546909300024-
dc.identifier.scopusid2-s2.0-85086513047-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.relation.journalWebOfScienceCategoryMaterials Science, Characterization & Testing-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusNANOSTRUCTURE-
dc.subject.keywordPlusBARRIER-
dc.subject.keywordPlusALLOYS-
dc.subject.keywordAuthorCobalt (Co)-
dc.subject.keywordAuthorCobalt-tungsten (Co-W)-
dc.subject.keywordAuthorNanowire-
dc.subject.keywordAuthorElectrical resistivity-
dc.subject.keywordAuthorMicrostructure-
dc.subject.keywordAuthorElectrodeposition-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE