Full metadata record

DC Field Value Language
dc.contributor.authorJeong, Deokyeol-
dc.contributor.authorOh, Eun Joong-
dc.contributor.authorKo, Ja Kyong-
dc.contributor.authorNam, Ju-Ock-
dc.contributor.authorPark, Hee-Soo-
dc.contributor.authorJin, Yong-Su-
dc.contributor.authorLee, Eun Jung-
dc.contributor.authorKim, Soo Rin-
dc.date.accessioned2024-01-19T17:02:48Z-
dc.date.available2024-01-19T17:02:48Z-
dc.date.created2021-09-05-
dc.date.issued2020-07-27-
dc.identifier.issn1932-6203-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118360-
dc.description.abstractXylose, the second most abundant sugar in lignocellulosic biomass hydrolysates, can be fermented bySaccharomyces cerevisiaeexpressing one of two heterologous xylose pathways: a xylose oxidoreductase pathway and a xylose isomerase pathway. Depending on the type of the pathway, its optimization strategies and the fermentation efficiencies vary significantly. In the present study, we constructed two isogenic strains expressing either the oxidoreductase pathway (XYL123) or the isomerase pathway (XI-XYL3), and delved into simple and reproducible ways to improve the resulting strains. First, the strains were subjected to the deletion ofPHO13, overexpression ofTAL1, and adaptive evolution, but those individual approaches were only effective in the XYL123 strain but not in the XI-XYL3 strain. Among other optimization strategies of the XI-XYL3 strain, we found that increasing the copy number of the xylose isomerase gene (xylA) is the most promising but yet preliminary strategy for the improvement. These results suggest that the oxidoreductase pathway might provide a simpler metabolic engineering strategy than the isomerase pathway for the development of efficient xylose-fermenting strains under the conditions tested in the present study.-
dc.languageEnglish-
dc.publisherPUBLIC LIBRARY SCIENCE-
dc.subjectRECOMBINANT SACCHAROMYCES-CEREVISIAE-
dc.subjectPENTOSE-PHOSPHATE PATHWAY-
dc.subjectIMPROVES ETHANOL-PRODUCTION-
dc.subjectXYLITOL DEHYDROGENASE-
dc.subjectFUNCTIONAL EXPRESSION-
dc.subjectADAPTIVE EVOLUTION-
dc.subjectANAEROBIC GROWTH-
dc.subjectUP-REGULATION-
dc.subjectACETIC-ACID-
dc.subjectISOMERASE-
dc.titleMetabolic engineering considerations for the heterologous expression of xylose-catabolic pathways inSaccharomyces cerevisiae-
dc.typeArticle-
dc.identifier.doi10.1371/journal.pone.0236294-
dc.description.journalClass1-
dc.identifier.bibliographicCitationPLOS ONE, v.15, no.7-
dc.citation.titlePLOS ONE-
dc.citation.volume15-
dc.citation.number7-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000556674500001-
dc.identifier.scopusid2-s2.0-85088812816-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.type.docTypeArticle-
dc.subject.keywordPlusRECOMBINANT SACCHAROMYCES-CEREVISIAE-
dc.subject.keywordPlusPENTOSE-PHOSPHATE PATHWAY-
dc.subject.keywordPlusIMPROVES ETHANOL-PRODUCTION-
dc.subject.keywordPlusXYLITOL DEHYDROGENASE-
dc.subject.keywordPlusFUNCTIONAL EXPRESSION-
dc.subject.keywordPlusADAPTIVE EVOLUTION-
dc.subject.keywordPlusANAEROBIC GROWTH-
dc.subject.keywordPlusUP-REGULATION-
dc.subject.keywordPlusACETIC-ACID-
dc.subject.keywordPlusISOMERASE-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE