Full metadata record

DC Field Value Language
dc.contributor.authorLim, Sang-Soon-
dc.contributor.authorKim, Kwang-Chon-
dc.contributor.authorLee, Seunghyeok-
dc.contributor.authorPark, Hyung-Ho-
dc.contributor.authorBaek, Seung-Hyub-
dc.contributor.authorKim, Jin-Sang-
dc.contributor.authorKim, Seong Keun-
dc.date.accessioned2024-01-19T17:32:09Z-
dc.date.available2024-01-19T17:32:09Z-
dc.date.created2021-09-04-
dc.date.issued2020-06-
dc.identifier.issn2079-6412-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118598-
dc.description.abstractThe carrier concentration in Bi2Te3-based alloys is a decisive factor in determining their thermoelectric performance. Herein, we propose a novel approach to modulate the carrier concentration via the encapsulation of the alloy precursor powders. Atomic layer deposition (ALD) of ZnO and SnO(2)was performed over the Bi(2)Te(2.7)Se(0.3)powders. After spark plasma sintering at 500 degrees C for 20 min, the carrier concentration in the ZnO-coated samples decreased, while the carrier concentration in the SnO2-coated samples increased. This trend was more pronounced as the number of ALD cycles increased. This was attributed to the intermixing of the metal ions at the interface. Zn(2+)substituted for Bi(3+)at the interface acted as an acceptor, while Sn(4+)substituted for Bi(3+)acted as a donor. This indicates that the carrier concentration can be adjusted depending on the materials deposited with ALD. The use of fine powders changes the carrier concentration more strongly, because the quantity of material deposited increases with the effective surface area. Therefore, the proposed approach would provide opportunities to precisely optimize the carrier concentration for high thermoelectric performance.-
dc.languageEnglish-
dc.publisherMDPI-
dc.subjectTHERMOELECTRIC PROPERTIES-
dc.subjectELECTRICAL-PROPERTIES-
dc.subjectHIGH-PERFORMANCE-
dc.subjectFILMS-
dc.subjectENHANCEMENT-
dc.subjectCONDUCTION-
dc.subjectSTABILITY-
dc.titleCarrier Modulation in Bi2Te3-Based Alloys via Interfacial Doping with Atomic Layer Deposition-
dc.typeArticle-
dc.identifier.doi10.3390/coatings10060572-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCOATINGS, v.10, no.6-
dc.citation.titleCOATINGS-
dc.citation.volume10-
dc.citation.number6-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000551139100001-
dc.identifier.scopusid2-s2.0-85087487195-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusTHERMOELECTRIC PROPERTIES-
dc.subject.keywordPlusELECTRICAL-PROPERTIES-
dc.subject.keywordPlusHIGH-PERFORMANCE-
dc.subject.keywordPlusFILMS-
dc.subject.keywordPlusENHANCEMENT-
dc.subject.keywordPlusCONDUCTION-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordAuthorcarrier modulation-
dc.subject.keywordAuthoratomic layer deposition-
dc.subject.keywordAuthorBi2Te3-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE