Full metadata record

DC Field Value Language
dc.contributor.authorKim, J.-
dc.contributor.authorChung, S. H.-
dc.contributor.authorChoi, J.-
dc.contributor.authorLee, J. M.-
dc.contributor.authorKim, S-J-
dc.date.accessioned2024-01-19T17:32:12Z-
dc.date.available2024-01-19T17:32:12Z-
dc.date.created2021-09-05-
dc.date.issued2020-05-28-
dc.identifier.issn0013-5194-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118602-
dc.description.abstractThe lack of patient effort during robot-assisted gait training (RAGT) is thought to be the main factor behind unsatisfactory rehabilitative efficacy among hemiparetic stroke patients. A key milestone to implement patient-driven RAGT is to predict gait intent prior to actual joint movement. Here, the authors propose a method of predicting step speed intent via surface electromyogram (EMG) signals from the soleus. Six lower-limb muscles were initially evaluated on a treadmill, and the results suggest that the soleus EMG signals correlate well with step speed. The authors further propose a simple linear regression model which predicts subsequent step speed via current soleus EMG signals with over-ground gait sessions, R-2 of similar to 0.6. The proposed experimental results and simple prediction model should be applicable for RAGT without significant modifications.-
dc.languageEnglish-
dc.publisherINST ENGINEERING TECHNOLOGY-IET-
dc.subjectTREADMILL WALKING-
dc.subjectSTROKE PATIENTS-
dc.titlePractical method for predicting intended gait speed via soleus surface EMG signals-
dc.typeArticle-
dc.identifier.doi10.1049/el.2020.0090-
dc.description.journalClass1-
dc.identifier.bibliographicCitationELECTRONICS LETTERS, v.56, no.11, pp.528 - 530-
dc.citation.titleELECTRONICS LETTERS-
dc.citation.volume56-
dc.citation.number11-
dc.citation.startPage528-
dc.citation.endPage530-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000537284100003-
dc.identifier.scopusid2-s2.0-85085387842-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusTREADMILL WALKING-
dc.subject.keywordPlusSTROKE PATIENTS-
dc.subject.keywordAuthormedical robotics-
dc.subject.keywordAuthorelectromyography-
dc.subject.keywordAuthorpatient rehabilitation-
dc.subject.keywordAuthorregression analysis-
dc.subject.keywordAuthorgait analysis-
dc.subject.keywordAuthormedical signal processing-
dc.subject.keywordAuthorintended gait speed-
dc.subject.keywordAuthorsoleus surface EMG signals-
dc.subject.keywordAuthorpatient effort-
dc.subject.keywordAuthorrobot-assisted gait training-
dc.subject.keywordAuthorhemiparetic stroke patients-
dc.subject.keywordAuthorpatient-driven RAGT-
dc.subject.keywordAuthorgait intent-
dc.subject.keywordAuthorjoint movement-
dc.subject.keywordAuthorstep speed intent-
dc.subject.keywordAuthorsurface electromyogram signals-
dc.subject.keywordAuthorlower-limb muscles-
dc.subject.keywordAuthorsimple linear regression model-
dc.subject.keywordAuthorover-ground gait sessions-
dc.subject.keywordAuthorrehabilitative efficacy-
dc.subject.keywordAuthorsoleus EMG signals-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE