Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kang, Tae-Hyung | - |
dc.contributor.author | Lee, Seung-Woo | - |
dc.contributor.author | Hwang, Kyowook | - |
dc.contributor.author | Shim, Wonbo | - |
dc.contributor.author | Lee, Ki-Young | - |
dc.contributor.author | Lim, Jung-Ah | - |
dc.contributor.author | Yu, Woong-Ryeol | - |
dc.contributor.author | Choi, In-Suk | - |
dc.contributor.author | Yi, Hyunjung | - |
dc.date.accessioned | 2024-01-19T17:32:15Z | - |
dc.date.available | 2024-01-19T17:32:15Z | - |
dc.date.created | 2021-09-05 | - |
dc.date.issued | 2020-05-27 | - |
dc.identifier.issn | 1944-8244 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/118604 | - |
dc.description.abstract | Nanostructured flexible electrodes with biological compatibility and intimate electrochemical coupling provide attractive solutions for various emerging bioelectronics and biosensor applications. Here, we develop all-inkjet-printed flexible nanobio-devices with excellent electrochemical coupling by employing amphiphilic biomaterial, an M13 phage, numerical simulation of single-drop formulation, and rational formulations of nanobio-ink. Inkjet-printed nanonetwork-structured electrodes of single-walled carbon nanotubes and M13 phage show efficient electrochemical coupling and hydrostability. Additive printing of the nanobio-inks also allows for systematic control of the physical and chemical properties of patterned electrodes and devices. All-inkjet-printed electrochemical field-effect transistors successfully exhibit pH-sensitive electrical current modulation. Moreover, all-inkjet-printed electrochemical biosensors fabricated via sequential inkjet-printing of the nanobio-ink, electrolytes, and enzyme solutions enable direct electrical coupling within the printed electrodes and detect glucose concentrations at as low as 20 mu M. Glucose levels in sweat are successfully measured, and the change in sweat glucose levels is shown to be highly correlated with blood glucose levels. Synergistic combination of additive fabrication by inkjet-printing with directed assembly of nanostructured electrodes by functional biomaterials could provide an efficient means of developing bioelectronic devices for personalized medicine, digital healthcare, and emerging biomimetic devices. | - |
dc.language | English | - |
dc.publisher | American Chemical Society | - |
dc.subject | WALLED CARBON NANOTUBES | - |
dc.subject | GLUCOSE-OXIDASE | - |
dc.subject | CONDUCTIVE NANOMESH | - |
dc.subject | GRAPHENE | - |
dc.subject | BIOSENSOR | - |
dc.subject | SENSOR | - |
dc.subject | CONFORMATION | - |
dc.subject | ELECTRONICS | - |
dc.subject | PEPTIDES | - |
dc.subject | SHEETS | - |
dc.title | All-Inkjet-Printed Flexible Nanobio-Devices with Efficient Electrochemical Coupling Using Amphiphilic Biomaterials | - |
dc.type | Article | - |
dc.identifier.doi | 10.1021/acsami.0c02596 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | ACS Applied Materials & Interfaces, v.12, no.21, pp.24231 - 24241 | - |
dc.citation.title | ACS Applied Materials & Interfaces | - |
dc.citation.volume | 12 | - |
dc.citation.number | 21 | - |
dc.citation.startPage | 24231 | - |
dc.citation.endPage | 24241 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000537731900061 | - |
dc.identifier.scopusid | 2-s2.0-85085536379 | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | WALLED CARBON NANOTUBES | - |
dc.subject.keywordPlus | GLUCOSE-OXIDASE | - |
dc.subject.keywordPlus | CONDUCTIVE NANOMESH | - |
dc.subject.keywordPlus | GRAPHENE | - |
dc.subject.keywordPlus | BIOSENSOR | - |
dc.subject.keywordPlus | SENSOR | - |
dc.subject.keywordPlus | CONFORMATION | - |
dc.subject.keywordPlus | ELECTRONICS | - |
dc.subject.keywordPlus | PEPTIDES | - |
dc.subject.keywordPlus | SHEETS | - |
dc.subject.keywordAuthor | inkjet-printing | - |
dc.subject.keywordAuthor | amphiphilic biomaterials | - |
dc.subject.keywordAuthor | single-walled carbon nanotubes | - |
dc.subject.keywordAuthor | glucose biosensors | - |
dc.subject.keywordAuthor | bioelectronics | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.