Full metadata record

DC Field Value Language
dc.contributor.authorAzmi, Randi-
dc.contributor.authorNurrosyid, Naufan-
dc.contributor.authorLee, Sang-Hak-
dc.contributor.authorAl Mubarok, Muhibullah-
dc.contributor.authorLee, Wooseop-
dc.contributor.authorHwang, Sunbin-
dc.contributor.authorYin, Wenping-
dc.contributor.authorTae Kyu Ahn-
dc.contributor.authorKim, Tae-Wook-
dc.contributor.authorRyu, Du Yeol-
dc.contributor.authorDo, Young Rag-
dc.contributor.authorJang, Sung-Yeon-
dc.date.accessioned2024-01-19T17:33:07Z-
dc.date.available2024-01-19T17:33:07Z-
dc.date.created2022-01-25-
dc.date.issued2020-05-
dc.identifier.issn2380-8195-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118651-
dc.description.abstractWhile perovskite solar cells (PSCs) have emerged as promising low-cost solar power generators, most reported high-performance PSCs employ electron transport layers (ETLs, mainly TiO2) treated at high temperatures (>= 450 degrees C), which may eventually hinder the development of flexible PSCs. Meanwhile, the development of low- temperature processed PSCs (L-PSCs) possessing performance levels comparable to those of high-temperature processed PSCs has actively been reported. In this study, L-PSCs with improved long-term stability and negligible hysteresis were developed through the effective passivation of shallow and deep traps in organic-inorganic hybrid perovskite (OIHP) crystals and at the ETL/OIHP interface. L-PSCs with alkaline chloride modification achieved state-of-the-art performance among reported L-PSCs (power conversion efficiency (PCE) = 22.6%) with a long-term shelf life. The origin of long-term stability and the efficient passivation of deep traps was revealed by monitoring the trap-state distribution. Moreover, the high PCE of a large-area device (21.3%, 1.12 cm(2)) was also demonstrated, confirming the uniformity of the modification.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleShallow and Deep Trap State Passivation for Low-Temperature Processed Perovskite Solar Cells-
dc.typeArticle-
dc.identifier.doi10.1021/acsenergylett.0c00596-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS ENERGY LETTERS, v.5, no.5, pp.1396 - 1403-
dc.citation.titleACS ENERGY LETTERS-
dc.citation.volume5-
dc.citation.number5-
dc.citation.startPage1396-
dc.citation.endPage1403-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000535176100008-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusORGANOMETAL HALIDE PEROVSKITES-
dc.subject.keywordPlusHIGHLY EFFICIENT-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusCATIONS-
dc.subject.keywordPlusFILMS-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE