Full metadata record

DC Field Value Language
dc.contributor.authorLee, Seon Hwa-
dc.contributor.authorHwang, Jang-Yeon-
dc.contributor.authorMing, Jun-
dc.contributor.authorCao, Zhen-
dc.contributor.authorHoang Anh Nguyen-
dc.contributor.authorJung, Hun-Gi-
dc.contributor.authorKim, Jaekook-
dc.contributor.authorSun, Yang-Kook-
dc.date.accessioned2024-01-19T17:33:36Z-
dc.date.available2024-01-19T17:33:36Z-
dc.date.created2021-09-05-
dc.date.issued2020-05-
dc.identifier.issn1614-6832-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118679-
dc.description.abstractHerein, a new solvation strategy enabled by Mg(NO3)(2) is introduced, which can be dissolved directly as Mg2+ and NO3- ions in the electrolyte to change the Li+ ion solvation structure and greatly increase interfacial stability in Li-metal batteries (LMBs). This is the first report of introducing Mg(NO3)(2) additives in an ester-based electrolyte composed of ternary salts and binary ester solvents to stabilize LMBs. In particular, it is found that NO3- efficiently forms a stable solid electrolyte interphase through an electrochemical reduction reaction, along with the other multiple anion components in the electrolyte. The interaction between Li+ and NO3- and coordination between Mg2+ and the solvent molecules greatly decreases the number of solvent molecules surrounding the Li+, which leads to facile Li+ desolvation during plating. In addition, Mg2+ ions are reduced to Mg via a spontaneous chemical reaction on the Li metal surface and subsequently form a lithiophilic Li-Mg alloy, suppressing lithium dendritic growth. The unique solvation chemistry of Mg(NO3)(2) enables long cycling stability and high efficiency of the Li-metal anode and ensures an unprecedented lifespan for a practical pouch-type LMB with high-voltage Ni-rich NCMA73 cathode even under constrained conditions.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.subjectANODE-
dc.subjectLAYER-
dc.subjectIONS-
dc.titleToward the Sustainable Lithium Metal Batteries with a New Electrolyte Solvation Chemistry-
dc.typeArticle-
dc.identifier.doi10.1002/aenm.202000567-
dc.description.journalClass1-
dc.identifier.bibliographicCitationADVANCED ENERGY MATERIALS, v.10, no.20-
dc.citation.titleADVANCED ENERGY MATERIALS-
dc.citation.volume10-
dc.citation.number20-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000537791700002-
dc.identifier.scopusid2-s2.0-85083527880-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusANODE-
dc.subject.keywordPlusLAYER-
dc.subject.keywordPlusIONS-
dc.subject.keywordAuthorelectrolyte solvation structures-
dc.subject.keywordAuthorhigh energy density-
dc.subject.keywordAuthorLi-Mg alloys-
dc.subject.keywordAuthorlithium metal batteries-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE