Full metadata record

DC Field Value Language
dc.contributor.authorAlvin, Stevanus-
dc.contributor.authorCahyadi, Handi Setiadi-
dc.contributor.authorHwang, Jieun-
dc.contributor.authorChang, Wonyoung-
dc.contributor.authorKwak, Sang Kyu-
dc.contributor.authorKim, Jaehoon-
dc.date.accessioned2024-01-19T17:33:37Z-
dc.date.available2024-01-19T17:33:37Z-
dc.date.created2021-09-05-
dc.date.issued2020-05-
dc.identifier.issn1614-6832-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118680-
dc.description.abstractHard carbon is the most promising anode material for sodium-ion batteries and potassium-ion batteries owing to its high stability, widespread availability, low-cost, and excellent performance. Understanding the carrier-ion storage mechanism is a prerequisite for developing high-performance electrode materials; however, the underlying ion storage mechanism in hard carbon has been a topic of debate because of its complex structure. Herein, it is demonstrated that the Li+-, Na+-, and K+-ion storage mechanisms in hard carbon are based on the adsorption of ions on the surface of active sites (e.g., defects, edges, and residual heteroatoms) in the sloping voltage region, followed by intercalation into the graphitic layers in the low-voltage plateau region. At a low current density of 3 mA g(-1), the graphitic layers of hard carbon are unlocked to permit Li+-ion intercalation, resulting in a plateau region in the lithium-ion batteries. To gain insights into the ion storage mechanism, experimental observations including various ex situ techniques, a constant-current constant-voltage method, and diffusivity measurements are correlated with the theoretical estimation of changes in carbon structures and insertion voltages during ion insertion obtained using the density functional theory.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.subjectHIGH-PERFORMANCE ANODE-
dc.subjectNA-ION BATTERIES-
dc.subjectNUCLEAR-MAGNETIC-RESONANCE-
dc.subjectHIGH-CAPACITY-
dc.subjectNANOPOROUS CARBON-
dc.subjectSURFACE-AREA-
dc.subjectINSERTION-
dc.subjectGRAPHITE-
dc.subjectSTORAGE-
dc.subjectELECTRODES-
dc.titleRevealing the Intercalation Mechanisms of Lithium, Sodium, and Potassium in Hard Carbon-
dc.typeArticle-
dc.identifier.doi10.1002/aenm.202000283-
dc.description.journalClass1-
dc.identifier.bibliographicCitationADVANCED ENERGY MATERIALS, v.10, no.20-
dc.citation.titleADVANCED ENERGY MATERIALS-
dc.citation.volume10-
dc.citation.number20-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000537791700011-
dc.identifier.scopusid2-s2.0-85083516886-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusHIGH-PERFORMANCE ANODE-
dc.subject.keywordPlusNA-ION BATTERIES-
dc.subject.keywordPlusNUCLEAR-MAGNETIC-RESONANCE-
dc.subject.keywordPlusHIGH-CAPACITY-
dc.subject.keywordPlusNANOPOROUS CARBON-
dc.subject.keywordPlusSURFACE-AREA-
dc.subject.keywordPlusINSERTION-
dc.subject.keywordPlusGRAPHITE-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordAuthordensity functional theory-
dc.subject.keywordAuthorex situ characterization-
dc.subject.keywordAuthorhard carbon-
dc.subject.keywordAuthorintercalation mechanism-
dc.subject.keywordAuthorlow-voltage plateau capacity-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE