Full metadata record

DC Field Value Language
dc.contributor.authorHa, Jung Hoon-
dc.contributor.authorLee, Boeun-
dc.contributor.authorKim, Jong Hak-
dc.contributor.authorCho, Byung Won-
dc.contributor.authorKim, Sang-Ok-
dc.contributor.authorOh, Si Hyoung-
dc.date.accessioned2024-01-19T17:33:54Z-
dc.date.available2024-01-19T17:33:54Z-
dc.date.created2021-09-04-
dc.date.issued2020-05-
dc.identifier.issn2405-8297-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118697-
dc.description.abstractDespite intensive studies for the last several decades, the progress in the development of efficient cathode materials for rechargeable magnesium batteries is slow. In particular, most intercalation-based materials demonstrate lethargic reaction kinetics owing to a large activation barrier for Mg2+ migration. Here, for the first time, we evaluate silver chalcogenides as efficient cathode materials based on a conversion reaction mechanism. Simple one-pot ball milling is employed to produce silver chalcogenide nanoparticles embedded in a carbon matrix, which exhibits excellent electrochemical activity with Mg2+ at room temperature. Particularly, the Ag2Se composite delivers a theoretical magnesium storage capacity of 182 mA h g(-1) at a 0.1-C rate and 79 mA h g(-1) at a 1-C with an adequate stability up to 500 cycles. Structural analyses during cycling confirm that silver chalcogenides operate via a conversion reaction route. This investigation provides an opportunity to develop a new class of viable cathode materials utilizing conversion chemistry.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleSilver chalcogenides (Ag2X, X=S, Se) nanoparticles embedded in carbon matrix for facile magnesium storage via conversion chemistry-
dc.typeArticle-
dc.identifier.doi10.1016/j.ensm.2019.12.008-
dc.description.journalClass1-
dc.identifier.bibliographicCitationEnergy Storage Materials, v.27, pp.459 - 465-
dc.citation.titleEnergy Storage Materials-
dc.citation.volume27-
dc.citation.startPage459-
dc.citation.endPage465-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000521992800048-
dc.identifier.scopusid2-s2.0-85076547351-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusALUMINUM-CHLORIDE COMPLEX-
dc.subject.keywordPlusOF-THE-ART-
dc.subject.keywordPlusELECTROLYTE-SOLUTIONS-
dc.subject.keywordPlusDISPLACEMENT REACTION-
dc.subject.keywordPlusBATTERIES-
dc.subject.keywordPlusCATHODE-
dc.subject.keywordPlusSULFIDE-
dc.subject.keywordPlusINTERCALATION-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusPROGRESS-
dc.subject.keywordAuthorSilver chalcogenides-
dc.subject.keywordAuthorCarbon composites-
dc.subject.keywordAuthorReaction mechanism-
dc.subject.keywordAuthorConversion-type cathodes-
dc.subject.keywordAuthorRechargeable magnesium batteries-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE