Full metadata record

DC Field Value Language
dc.contributor.authorShin, Mun-Sik-
dc.contributor.authorLim, Seohee-
dc.contributor.authorPark, Jong-Hyeok-
dc.contributor.authorKim, Hyoung-Juhn-
dc.contributor.authorChae, Soryong-
dc.contributor.authorPark, Jin-Soo-
dc.date.accessioned2024-01-19T17:34:28Z-
dc.date.available2024-01-19T17:34:28Z-
dc.date.created2021-09-05-
dc.date.issued2020-04-14-
dc.identifier.issn0360-3199-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118730-
dc.description.abstractA novel anion-conducting ionomer binder, quaternized polybenzimidazoles (QPBIs) with 4-methyl-4-glycidylmorpholin-4-ium chloride (MGMC) in the main-chain and/or in the side group were synthesized for solid alkaline fuel cells (SAFCs). Crosslinking of the poly-benzimidazole derivatives using a crosslinker containing epoxy groups formed ionomer binder in electrodes, and the crosslinked QPBIs showed better mechanical stability than non-crosslinked QPBIs. During the electrode drying process, on-site crosslinking was introduced to form thermally crosslinked ionomer binder in catalyst layers. A bench-scale SAFC with the crosslinked QPBI (CQPBI) containing 35 wt% of ionomer binder showed higher peak power density (35.3 mW cm(-2)) than the SAFC with 2,2'(m-phenylene)-5,5'bibenzimidazole (m-PBI) with 35 wt% of ionomer binder (20.9 mW cm(-2)). The membrane-electrode assembly (MEA) with CQPBI (35 wt% binder) showed two times higher chemical stability than that with m-PBI (35 wt% of ionomer binder) in load cell tests. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectANION-EXCHANGE MEMBRANE-
dc.subjectPOLYMER ELECTROLYTE MEMBRANE-
dc.subjectKOH-DOPED POLYBENZIMIDAZOLE-
dc.subjectPOLY(VINYL ALCOHOL)-
dc.subjectPERFORMANCE-
dc.subjectSTABILITY-
dc.subjectFABRICATION-
dc.subjectAMMONIUM-
dc.subjectLINKING-
dc.subjectLIQUID-
dc.titleThermally crosslinked and quaternized polybenzimidazole ionomer binders for solid alkaline fuel cells-
dc.typeArticle-
dc.identifier.doi10.1016/j.ijhydene.2020.02.081-
dc.description.journalClass1-
dc.identifier.bibliographicCitationINTERNATIONAL JOURNAL OF HYDROGEN ENERGY, v.45, no.20, pp.11773 - 11783-
dc.citation.titleINTERNATIONAL JOURNAL OF HYDROGEN ENERGY-
dc.citation.volume45-
dc.citation.number20-
dc.citation.startPage11773-
dc.citation.endPage11783-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000524128500034-
dc.identifier.scopusid2-s2.0-85081677341-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.type.docTypeArticle-
dc.subject.keywordPlusANION-EXCHANGE MEMBRANE-
dc.subject.keywordPlusPOLYMER ELECTROLYTE MEMBRANE-
dc.subject.keywordPlusKOH-DOPED POLYBENZIMIDAZOLE-
dc.subject.keywordPlusPOLY(VINYL ALCOHOL)-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusAMMONIUM-
dc.subject.keywordPlusLINKING-
dc.subject.keywordPlusLIQUID-
dc.subject.keywordAuthorOn-site crosslinking-
dc.subject.keywordAuthorPolybenzimidazole-
dc.subject.keywordAuthorIonomer binder-
dc.subject.keywordAuthorCatalyst layer-
dc.subject.keywordAuthorMembrane-electrode assembly-
dc.subject.keywordAuthorSolid alkaline fuel cell-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE