Full metadata record

DC Field Value Language
dc.contributor.authorRoh, Ha-Kyung-
dc.contributor.authorLee, Geon-Woo-
dc.contributor.authorHaghighat-Shishavan, Safa-
dc.contributor.authorChung, Kyung Yoon-
dc.contributor.authorKim, Kwang-Bum-
dc.date.accessioned2024-01-19T17:34:43Z-
dc.date.available2024-01-19T17:34:43Z-
dc.date.created2021-09-05-
dc.date.issued2020-04-01-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118745-
dc.description.abstractNano-sized oxides are investigated to improve rate capability by decreasing ion and electron travel length. However, extended contact area of nano-sized oxides with electrolyte causes undesirable side reactions and poor cycling stability. Interestingly, previous studies focus either on preparation of nano-sized oxides or on carbon coating to prevent side reactions. In this study, a microspherical composite of ethylene glycol-derived in situ carbon-coated Li4Ti5O12 nanoparticles and reduced graphene oxide is prepared by polyol-mediated spray drying method using ethylene glycol as a stabilizer to control particle growth and ethylene glycol coordinated with Ti precursor as a carbon source. The composite shows excellent rate capability as anode materials for lithium-ion and sodium-ion batteries. Most importantly, the composite shows 94% capacity retention after 3000 cycles at 10 C for Li+ storage and 95% capacity retention after 1000 cycles at 5 C for Na+ storage at room temperature. At 60 degrees C, furthermore, composite shows 93% capacity retention after 1000 cycles for Li+ storage and 95% capacity retention after 500 cycles for Na+ storage at 10 C. The post-mortem analysis confirms that in situ carbon coating on Li4Ti5O12 effectively prevents direct contact of Li(4)Ti(5)O(12 )nanoparticles with electrolyte, thus, blocking side reactions and greatly improving cycling stability.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE SA-
dc.subjectHIGH ELECTROCHEMICAL PERFORMANCE-
dc.subjectANATASE TIO2 NANOCRYSTALS-
dc.subjectANODE MATERIALS-
dc.subjectTITANIUM GLYCOLATE-
dc.subjectPYRO-SYNTHESIS-
dc.subjectGRAPHENE NANOSHEETS-
dc.subjectFACILE SYNTHESIS-
dc.subjectSIZE-CONTROL-
dc.subjectNANOCOMPOSITE-
dc.subjectBATTERIES-
dc.titlePolyol-mediated carbon-coated Li4Ti5O12 nanoparticle/graphene composites with long-term cycling stability for lithium and sodium ion storages-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2019.123984-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCHEMICAL ENGINEERING JOURNAL, v.385-
dc.citation.titleCHEMICAL ENGINEERING JOURNAL-
dc.citation.volume385-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000507465200118-
dc.identifier.scopusid2-s2.0-85077017726-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusHIGH ELECTROCHEMICAL PERFORMANCE-
dc.subject.keywordPlusANATASE TIO2 NANOCRYSTALS-
dc.subject.keywordPlusANODE MATERIALS-
dc.subject.keywordPlusTITANIUM GLYCOLATE-
dc.subject.keywordPlusPYRO-SYNTHESIS-
dc.subject.keywordPlusGRAPHENE NANOSHEETS-
dc.subject.keywordPlusFACILE SYNTHESIS-
dc.subject.keywordPlusSIZE-CONTROL-
dc.subject.keywordPlusNANOCOMPOSITE-
dc.subject.keywordPlusBATTERIES-
dc.subject.keywordAuthorPolyol-mediated spray-drying synthesis-
dc.subject.keywordAuthorEthylene glycol-
dc.subject.keywordAuthorIn situ carbon coating-
dc.subject.keywordAuthorLong-term cycling stability-
dc.subject.keywordAuthorHigh-rate capability-
dc.subject.keywordAuthorLithium-ion batteries and sodium-ion batteries-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE