Full metadata record

DC Field Value Language
dc.contributor.authorJung, Wo Dum-
dc.contributor.authorKim, Ji-Su-
dc.contributor.authorChoi, Sungjun-
dc.contributor.authorKim, Seongmin-
dc.contributor.authorJeon, Minjae-
dc.contributor.authorJung, Hun-Gi-
dc.contributor.authorChung, Kyung Yoon-
dc.contributor.authorLee, Jong-Ho-
dc.contributor.authorKim, Byung-Kook-
dc.contributor.authorLee, Jong-Heun-
dc.contributor.authorKim, Hyoungchul-
dc.date.accessioned2024-01-19T18:00:48Z-
dc.date.available2024-01-19T18:00:48Z-
dc.date.created2021-09-05-
dc.date.issued2020-04-
dc.identifier.issn1530-6984-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118805-
dc.description.abstractAlthough several crystalline materials have been developed as Li-ion conductors for use as solid electrolytes in all-solid-state batteries (ASSBs), producing materials with high Li-ion conductivities is time-consuming and cost-intensive. Herein, we introduce a superionic halogen-rich Li-argyrodite (HRLA) and demonstrate its innovative synthesis using ultimate-energy mechanical alloying (UMA) and rapid thermal annealing (RTA). UMA with a 49 G-force milling energy provides a one-pot process that includes mixing, glassification, and crystallization, to produce as-milled HRLA powder that is similar to 70% crystallized; subsequent RTA using an infrared lamp increases this crystallinity to similar to 82% within 25 min. Surprisingly, this HRLA exhibits the highest Li-ion conductivity among Li-argyrodites (10.2 mS cm(-1) at 25 degrees C, cold-pressed powder compact) reported so far. Furthermore, we confirm that this superionic HRLA works well as a promising solid electrolyte without a decreased intrinsic electrochemical window in various electrode configurations and delivers impressive cell performance (114.2 mAh g(-1) at 0.5 C).-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleSuperionic Halogen-Rich Li-Argyrodites Using In Situ Nanocrystal Nucleation and Rapid Crystal Growth-
dc.typeArticle-
dc.identifier.doi10.1021/acs.nanolett.9b04597-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNANO LETTERS, v.20, no.4, pp.2303 - 2309-
dc.citation.titleNANO LETTERS-
dc.citation.volume20-
dc.citation.number4-
dc.citation.startPage2303-
dc.citation.endPage2309-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000526413400012-
dc.identifier.scopusid2-s2.0-85081670537-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusCOMPOSITE-
dc.subject.keywordPlusCAPACITY-
dc.subject.keywordPlusSOLID-STATE BATTERIES-
dc.subject.keywordPlusMAS-NMR-
dc.subject.keywordPlusELECTROLYTES-
dc.subject.keywordPlusCRYSTALLIZATION-
dc.subject.keywordPlus1ST-PRINCIPLES-
dc.subject.keywordPlusCONDUCTIVITY-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordAuthorLi-ion conductors-
dc.subject.keywordAuthorLi-argyrodites-
dc.subject.keywordAuthormechanical alloying-
dc.subject.keywordAuthorrapid-thermal annealing-
dc.subject.keywordAuthorall-solid-state batteries-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE