Full metadata record

DC Field Value Language
dc.contributor.authorKim, Ye-Ram-
dc.contributor.authorKim, Jae-Sung-
dc.contributor.authorGu, Su-Jin-
dc.contributor.authorJo, Sungsin-
dc.contributor.authorKim, Sojin-
dc.contributor.authorKim, Sun Young-
dc.contributor.authorLee, Daeun-
dc.contributor.authorJang, Kiseok-
dc.contributor.authorChoo, Hyunah-
dc.contributor.authorKim, Tae-Hwan-
dc.contributor.authorJung, Jae U.-
dc.contributor.authorMin, Sun-Joon-
dc.contributor.authorYang, Chul-Su-
dc.date.accessioned2024-01-19T18:01:42Z-
dc.date.available2024-01-19T18:01:42Z-
dc.date.created2021-09-05-
dc.date.issued2020-03-12-
dc.identifier.issn2045-2322-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118855-
dc.description.abstractRheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease linked to oxidative stress, which is associated with significant morbidity. The NADPH oxidase complex (NOX) produces reactive oxygen species (ROS) that are among the key markers for determining RA's pathophysiology. Therefore, understanding ROS-regulated molecular pathways and their interaction is necessary for developing novel therapeutic approaches for RA. Here, by combining mouse genetics and biochemistry with clinical tissue analysis, we reveal that in vivo Rubicon interacts with the p22phox subunit of NOX, which is necessary for increased ROS-mediated RA pathogenesis. Furthermore, we developed a series of new aryl propanamide derivatives consisting of tetrahydroindazole and thiadiazole as p22phox inhibitors and selected 2-(tetrahydroindazolyl)phenoxy-N-(thiadiazolyl)propanamide 2 (TIPTP, M.W. 437.44), which showed considerably improved potency, reaching an IC50 value up to 100-fold lower than an inhibitor that we previously synthesized reported N8 peptide-mimetic small molecule (blocking p22phox-Rubicon interaction). Notably, TIPTP treatment showed significant therapeutic effects a mouse model for RA. Furthermore, TIPTP had anti-inflammatory effects ex vivo in monocytes from healthy individuals and synovial fluid cells from RA patients. These findings may have clinical applications for the development of TIPTP as a small molecule inhibitor of the p22phox-Rubicon axis for the treatment of ROS-driven diseases such as RA.-
dc.languageEnglish-
dc.publisherNATURE PUBLISHING GROUP-
dc.subjectNLRP3 INFLAMMASOME-
dc.subjectLIPID-PEROXIDATION-
dc.subjectOXIDATIVE STRESS-
dc.subjectDISEASE-ACTIVITY-
dc.subjectREACTIVE OXYGEN-
dc.subjectSYNOVIAL-FLUID-
dc.subjectANIMAL-MODELS-
dc.subjectKAPPA-B-
dc.subjectACTIVATION-
dc.subjectMOUSE-
dc.titleIdentification of highly potent and selective inhibitor, TIPTP, of the p22phox-Rubicon axis as a therapeutic agent for rheumatoid arthritis-
dc.typeArticle-
dc.identifier.doi10.1038/s41598-020-61630-x-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSCIENTIFIC REPORTS, v.10, no.1-
dc.citation.titleSCIENTIFIC REPORTS-
dc.citation.volume10-
dc.citation.number1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000520964500022-
dc.identifier.scopusid2-s2.0-85081718977-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.type.docTypeArticle-
dc.subject.keywordPlusNLRP3 INFLAMMASOME-
dc.subject.keywordPlusLIPID-PEROXIDATION-
dc.subject.keywordPlusOXIDATIVE STRESS-
dc.subject.keywordPlusDISEASE-ACTIVITY-
dc.subject.keywordPlusREACTIVE OXYGEN-
dc.subject.keywordPlusSYNOVIAL-FLUID-
dc.subject.keywordPlusANIMAL-MODELS-
dc.subject.keywordPlusKAPPA-B-
dc.subject.keywordPlusACTIVATION-
dc.subject.keywordPlusMOUSE-
dc.subject.keywordAuthorRheumatoid arthritis-
dc.subject.keywordAuthortherapeutic agent-
dc.subject.keywordAuthorROS-
dc.subject.keywordAuthorNOX-
dc.subject.keywordAuthorNSAID-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE