Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, Jungdong | - |
dc.contributor.author | Ampadu, Emmanuel K. | - |
dc.contributor.author | Oh, Eunsoon | - |
dc.contributor.author | Choi, Hongkyw | - |
dc.contributor.author | Ahn, Hak-Young | - |
dc.contributor.author | Cho, So-Hye | - |
dc.contributor.author | Choi, Won Jun | - |
dc.contributor.author | Byun, Ji Young | - |
dc.date.accessioned | 2024-01-19T18:02:24Z | - |
dc.date.available | 2024-01-19T18:02:24Z | - |
dc.date.created | 2021-09-05 | - |
dc.date.issued | 2020-03 | - |
dc.identifier.issn | 1567-1739 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/118894 | - |
dc.description.abstract | We discussed photocurrent spectra of photovoltaic PbS infrared detectors using multi-layer graphene as transparent electrode, where p-PbS films were deposited on TiO2/FTO substrates by chemical bath deposition. In the photocurrent spectra, we observed both above-bandgap and sub-bandgap photocurrent without any external bias. We discussed impurity band model and grain boundary model in order to explain the sub-bandgap photocurrent near 15 mu m. Since FTO is transparent in the visible range, we were able to illuminate green laser beam from the FTO back-side, and photo-response up to 50 mu m was found to be enhanced. This long wavelength photo-response was attributed to the excitation of the photo-electrons accumulated at the TiO2/PbS interface. Our photovoltaic PbS devices can detect not only short-infrared but also terahertz radiation at room temperature, which is highly applicable to various fields. | - |
dc.language | English | - |
dc.publisher | ELSEVIER | - |
dc.subject | TRANSPORT LAYER | - |
dc.subject | QUANTUM DOTS | - |
dc.title | Photocurrent spectra for above and below bandgap energies from photovoltaic PbS infrared detectors with graphene transparent electrodes | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.cap.2020.01.006 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | CURRENT APPLIED PHYSICS, v.20, no.3, pp.445 - 450 | - |
dc.citation.title | CURRENT APPLIED PHYSICS | - |
dc.citation.volume | 20 | - |
dc.citation.number | 3 | - |
dc.citation.startPage | 445 | - |
dc.citation.endPage | 450 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.description.journalRegisteredClass | kci | - |
dc.identifier.kciid | ART002569504 | - |
dc.identifier.wosid | 000509752300012 | - |
dc.identifier.scopusid | 2-s2.0-85077753460 | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | TRANSPORT LAYER | - |
dc.subject.keywordPlus | QUANTUM DOTS | - |
dc.subject.keywordAuthor | Lead sulfide | - |
dc.subject.keywordAuthor | Photocurrent spectra | - |
dc.subject.keywordAuthor | Infrared detectors | - |
dc.subject.keywordAuthor | Photovoltaic | - |
dc.subject.keywordAuthor | Multilayer graphene | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.