Full metadata record

DC Field Value Language
dc.contributor.authorSong, Kyung Mee-
dc.contributor.authorJeong, Jae-Seung-
dc.contributor.authorPan, Biao-
dc.contributor.authorZhang, Xichao-
dc.contributor.authorXia, Jing-
dc.contributor.authorCha, Sunkyung-
dc.contributor.authorPark, Tae-Eon-
dc.contributor.authorKim, Kwangsu-
dc.contributor.authorFinizio, Simone-
dc.contributor.authorRaabe, Joerg-
dc.contributor.authorChang, Joonyeon-
dc.contributor.authorZhou, Yan-
dc.contributor.authorZhao, Weisheng-
dc.contributor.authorKang, Wang-
dc.contributor.authorJu, Hyunsu-
dc.contributor.authorWoo, Seonghoon-
dc.date.accessioned2024-01-19T18:02:49Z-
dc.date.available2024-01-19T18:02:49Z-
dc.date.created2021-09-04-
dc.date.issued2020-03-
dc.identifier.issn2520-1131-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118919-
dc.description.abstractMagnetic skyrmions are topologically protected spin textures that have nanoscale dimensions and can be manipulated by an electric current. These properties make the structures potential information carriers in data storage, processing and transmission devices. However, the development of functional all-electrical electronic devices based on skyrmions remains challenging. Here we show that the current-induced creation, motion, detection and deletion of skyrmions at room temperature can be used to mimic the potentiation and depression behaviours of biological synapses. In particular, the accumulation and dissipation of magnetic skyrmions in ferrimagnetic multilayers can be controlled with electrical pulses to represent the variations in the synaptic weights. Using chip-level simulations, we demonstrate that such artificial synapses based on magnetic skyrmions could be used for neuromorphic computing tasks such as pattern recognition. For a handwritten pattern dataset, our system achieves a recognition accuracy of similar to 89%, which is comparable to the accuracy achieved with software-based ideal training (similar to 93%).-
dc.languageEnglish-
dc.publisherNATURE PUBLISHING GROUP-
dc.subjectMAGNETIC SKYRMIONS-
dc.subjectDYNAMICS-
dc.subjectDEVICES-
dc.subjectMOTION-
dc.titleSkyrmion-based artificial synapses for neuromorphic computing-
dc.typeArticle-
dc.identifier.doi10.1038/s41928-020-0385-0-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNATURE ELECTRONICS, v.3, no.3, pp.148 - 155-
dc.citation.titleNATURE ELECTRONICS-
dc.citation.volume3-
dc.citation.number3-
dc.citation.startPage148-
dc.citation.endPage155-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000519841100001-
dc.identifier.scopusid2-s2.0-85082703149-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusMAGNETIC SKYRMIONS-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusDEVICES-
dc.subject.keywordPlusMOTION-
dc.subject.keywordAuthormagnetic skyrmion-
dc.subject.keywordAuthorsynapse-
dc.subject.keywordAuthorneuromorhic comoputing-
dc.subject.keywordAuthorspin texture-
dc.subject.keywordAuthorMNIST-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE