Full metadata record

DC Field Value Language
dc.contributor.authorChoi, Ye Hun-
dc.contributor.authorLee, Sang Seok-
dc.contributor.authorLee, Dong-Myeong-
dc.contributor.authorJeong, Hyeon Su-
dc.contributor.authorKim, Shin-Hyun-
dc.date.accessioned2024-01-19T18:03:05Z-
dc.date.available2024-01-19T18:03:05Z-
dc.date.created2021-09-04-
dc.date.issued2020-03-
dc.identifier.issn1613-6810-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118934-
dc.description.abstractMicrogels, microparticles made of hydrogels, show fast diffusion kinetics and high reconfigurability while maintaining the advantages of hydrogels, being useful for various applications. Here, presented is a new microfluidic strategy for producing polymer-graphene oxide (GO) composite microgels without chemical cues or a temperature swing for gelation. As a main component of microgels, polymers that are able to form hydrogen bonds, such as polyvinyl alcohol (PVA), are used. In the mixture of PVA and GO, GO is tethered by PVA through hydrogen bonding. When the mixture is rapidly concentrated in the core of double-emulsion drops by osmotic-pressure-driven water pumping, PVA-tethered GO sheets form a nematic phase with a planar alignment. In addition, the GO sheets are linked by additional hydrogen bonds, leading to a sol-gel transition. Therefore, the PVA-GO composite remains undissolved when it is directly exposed to water by oil-shell rupture. These composite microgels can be also produced using poly(ethylene oxide) or poly(acrylic acid), instead of PVA. In addition, the microgels can be functionalized by incorporating other polymers in the presence of the hydrogel-forming polymers. It is shown that the multicomponent microgels made from a mixture of polyacrylamide, PVA, and GO show an excellent adsorption capacity for impurities.-
dc.languageEnglish-
dc.publisherWiley - V C H Verlag GmbbH & Co.-
dc.titleComposite Microgels Created by Complexation between Polyvinyl Alcohol and Graphene Oxide in Compressed Double-Emulsion Drops-
dc.typeArticle-
dc.identifier.doi10.1002/smll.201903812-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSmall, v.16, no.9-
dc.citation.titleSmall-
dc.citation.volume16-
dc.citation.number9-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000486243000001-
dc.identifier.scopusid2-s2.0-85073796074-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusMICROFLUIDIC FABRICATION-
dc.subject.keywordPlusPOLY(VINYL ALCOHOL)-
dc.subject.keywordPlusHYDROGEL BEADS-
dc.subject.keywordPlusCARBON DOTS-
dc.subject.keywordPlusREMOVAL-
dc.subject.keywordPlusENCAPSULATION-
dc.subject.keywordPlusDISPERSIONS-
dc.subject.keywordPlusADSORPTION-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusRELEASE-
dc.subject.keywordAuthordouble-emulsion drops-
dc.subject.keywordAuthorgraphene oxide-
dc.subject.keywordAuthorhydrogen bonds-
dc.subject.keywordAuthormicrogels-
dc.subject.keywordAuthornematic phase-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE