Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wijaya, Yanuar Philip | - |
dc.contributor.author | Grossmann-Neuhaeusler, Tobias | - |
dc.contributor.author | Dhewangga Putra, Robertus Dhimas | - |
dc.contributor.author | Smith, Kevin J. | - |
dc.contributor.author | Kim, Chang Soo | - |
dc.contributor.author | Gyenge, Elod L. | - |
dc.date.accessioned | 2024-01-19T18:03:35Z | - |
dc.date.available | 2024-01-19T18:03:35Z | - |
dc.date.created | 2021-09-04 | - |
dc.date.issued | 2020-02 | - |
dc.identifier.issn | 1864-5631 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/118963 | - |
dc.description.abstract | Electrocatalytic hydrogenation (ECH) of guaiacol was performed in a stirred slurry electrochemical reactor (SSER) using 5wt% Pt/C catalyst in the cathode compartment. Different pairs of acid (H2SO4), neutral (NaCl), and alkaline (NaOH) catholyte-anolyte combinations separated by a Nafion((R)) 117 cation exchange membrane, were investigated by galvanostatic and potentiostatic electrolysis to probe the electrolyte and proton concentration effect on guaiacol conversion, product distribution, and Faradaic efficiency. The acid-acid and neutral-acid pairs were found to be the most effective. In the case of the neutral-acid pair, proton diffusion and migration through the membrane from the anolyte to the catholyte supplies the protons required for ECH. Typically, the two major hydrogenation products were cyclohexanol and 2-methoxycyclohexanol. However, ECH at constant cathode superficial current density (-182mAcm(-2)) and higher temperature (i.e., 60 degrees C) favored a pathway leading mainly to cyclohexanone. The guaiacol conversion routes were affected by temperature- and cathode potential-dependent surface coverage of adsorbed hydrogen radicals generated through electroreduction of protons. | - |
dc.language | English | - |
dc.publisher | Wiley - V C H Verlag GmbbH & Co. | - |
dc.title | Electrocatalytic Hydrogenation of Guaiacol in Diverse Electrolytes Using a Stirred Slurry Reactor | - |
dc.type | Article | - |
dc.identifier.doi | 10.1002/cssc.201902611 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | ChemSusChem, v.13, no.3, pp.629 - 639 | - |
dc.citation.title | ChemSusChem | - |
dc.citation.volume | 13 | - |
dc.citation.number | 3 | - |
dc.citation.startPage | 629 | - |
dc.citation.endPage | 639 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000514575700019 | - |
dc.identifier.scopusid | 2-s2.0-85077870311 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Green & Sustainable Science & Technology | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | BIO-OIL | - |
dc.subject.keywordPlus | THERMAL CATALYSIS | - |
dc.subject.keywordPlus | LIGNIN | - |
dc.subject.keywordPlus | HYDRODEOXYGENATION | - |
dc.subject.keywordPlus | HYDROGENOLYSIS | - |
dc.subject.keywordPlus | PHENOL | - |
dc.subject.keywordAuthor | electrocatalytic hydrogenation | - |
dc.subject.keywordAuthor | electrochemical reactor | - |
dc.subject.keywordAuthor | guaiacol | - |
dc.subject.keywordAuthor | lignin | - |
dc.subject.keywordAuthor | stirred slurry | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.