Full metadata record

DC Field Value Language
dc.contributor.authorWijaya, Yanuar Philip-
dc.contributor.authorGrossmann-Neuhaeusler, Tobias-
dc.contributor.authorDhewangga Putra, Robertus Dhimas-
dc.contributor.authorSmith, Kevin J.-
dc.contributor.authorKim, Chang Soo-
dc.contributor.authorGyenge, Elod L.-
dc.date.accessioned2024-01-19T18:03:35Z-
dc.date.available2024-01-19T18:03:35Z-
dc.date.created2021-09-04-
dc.date.issued2020-02-
dc.identifier.issn1864-5631-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118963-
dc.description.abstractElectrocatalytic hydrogenation (ECH) of guaiacol was performed in a stirred slurry electrochemical reactor (SSER) using 5wt% Pt/C catalyst in the cathode compartment. Different pairs of acid (H2SO4), neutral (NaCl), and alkaline (NaOH) catholyte-anolyte combinations separated by a Nafion((R)) 117 cation exchange membrane, were investigated by galvanostatic and potentiostatic electrolysis to probe the electrolyte and proton concentration effect on guaiacol conversion, product distribution, and Faradaic efficiency. The acid-acid and neutral-acid pairs were found to be the most effective. In the case of the neutral-acid pair, proton diffusion and migration through the membrane from the anolyte to the catholyte supplies the protons required for ECH. Typically, the two major hydrogenation products were cyclohexanol and 2-methoxycyclohexanol. However, ECH at constant cathode superficial current density (-182mAcm(-2)) and higher temperature (i.e., 60 degrees C) favored a pathway leading mainly to cyclohexanone. The guaiacol conversion routes were affected by temperature- and cathode potential-dependent surface coverage of adsorbed hydrogen radicals generated through electroreduction of protons.-
dc.languageEnglish-
dc.publisherWiley - V C H Verlag GmbbH & Co.-
dc.titleElectrocatalytic Hydrogenation of Guaiacol in Diverse Electrolytes Using a Stirred Slurry Reactor-
dc.typeArticle-
dc.identifier.doi10.1002/cssc.201902611-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemSusChem, v.13, no.3, pp.629 - 639-
dc.citation.titleChemSusChem-
dc.citation.volume13-
dc.citation.number3-
dc.citation.startPage629-
dc.citation.endPage639-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000514575700019-
dc.identifier.scopusid2-s2.0-85077870311-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryGreen & Sustainable Science & Technology-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.type.docTypeArticle-
dc.subject.keywordPlusBIO-OIL-
dc.subject.keywordPlusTHERMAL CATALYSIS-
dc.subject.keywordPlusLIGNIN-
dc.subject.keywordPlusHYDRODEOXYGENATION-
dc.subject.keywordPlusHYDROGENOLYSIS-
dc.subject.keywordPlusPHENOL-
dc.subject.keywordAuthorelectrocatalytic hydrogenation-
dc.subject.keywordAuthorelectrochemical reactor-
dc.subject.keywordAuthorguaiacol-
dc.subject.keywordAuthorlignin-
dc.subject.keywordAuthorstirred slurry-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE