Plasma-Assisted Surface Modification on the Electrode Interface for Flexible Fiber-Shaped Zn-Polyaniline Batteries
- Authors
- Yu, Hyunjin; Liu, Guicheng; Wang, Manxiang; Ren, Ren; Shim, Gayoung; Kim, Ji Young; Minh Xuan Tran; Byun, Dongjin; Lee, Joong Kee
- Issue Date
- 2020-02-05
- Publisher
- American Chemical Society
- Citation
- ACS Applied Materials & Interfaces, v.12, no.5, pp.5820 - 5830
- Abstract
- A novel flexible fiber-shaped zinc-polyaniline battery (FZPB) is proposed to enhance the electrochemical performance, mass loading, and stability of polyaniline cathodes. To this end, electron-cyclotron-resonance oxygen plasma-modified carbon fibers are employed. During plasma treatment, on the carbon-fiber surface, O-2(+) plasma breaks the C-C, C-H, and C-N bonds to form C radicals, while the O-2 molecules are broken down to reactive oxygen species (O+, O2+, O2+, and O-2(2+)). The C radicals and the reactive oxygen species are combined to homogeneously form oxygen functional groups, such as -OH, -COOH, and -C=O. The surface area and total pore volume of the treated carbon fibers increase as the plasma attacks. During electrodeposition, aniline interacts with the oxygen functional groups to form N-O and N-H bonds and pi-pi stacking, resulting in a homogeneous and high-loading polyaniline structure and improved adhesion between polyaniline and carbon fibers. In an FZPB, the cathode with plasma-treated carbon fibers and a polyaniline loading of 0.158 mg mg(CF)(-1) (i.e., 2.36 mg cm(CF)(-1)) exhibits a capacity retention of 95.39% after 200 cycles at 100 mA g(-1) and a discharge capacity of 83.96 mA h g(-1) at such a high current density of 2000 mA g(-1), which are similar to 1.67 and 1.24 times those of the pristine carbon-fiber-based one, respectively. Furthermore, the FZPB exhibits high flexibility with a capacity retention of 86.4% after bending to a radius of 2.5 mm for 100 cycles as a wearable energy device.
- Keywords
- fiber-shaped Zn-polyaniline battery; electron cyclotron resonance O-2-plasma treatment; surface modification of carbon fibers; electrodeposition of polyaniline; high electrochemical performance
- ISSN
- 1944-8244
- URI
- https://pubs.kist.re.kr/handle/201004/118970
- DOI
- 10.1021/acsami.9b19172
- Appears in Collections:
- KIST Article > 2020
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.