Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, Myungjoon | - |
dc.contributor.author | Yeo, Byung Chul | - |
dc.contributor.author | Park, Youngtae | - |
dc.contributor.author | Lee, Hyuck Mo | - |
dc.contributor.author | Han, Sang Soo | - |
dc.contributor.author | Kim, Donghun | - |
dc.date.accessioned | 2024-01-19T18:30:17Z | - |
dc.date.available | 2024-01-19T18:30:17Z | - |
dc.date.created | 2021-09-05 | - |
dc.date.issued | 2020-01-28 | - |
dc.identifier.issn | 0897-4756 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/119070 | - |
dc.description.abstract | The development of catalysts for the electrochemical N-2 reduction reaction (NRR) with a low limiting potential and high Faradaic efficiency is highly desirable but remains challenging. Here, to achieve acceleration, we develop and report a slab graph convolutional neural network (SGCNN), an accurate and flexible machine learning (ML) model that is suited for probing surface reactions in catalysis. With a self-accumulated database of 3040 surface calculations at the density-functional-theory (DFT) level, SGCNN predicted the binding energies, ranging over 8 eV, of five key adsorbates (H, N-2, N2H, NH, NH2) related to NRR performance with a mean absolute error (MAE) of only 0.23 eV. SGCNN only requires the low-level inputs of elemental properties available in the periodic table of elements and connectivity information of constituent atoms; thus, accelerations can be realized. Via a combined process of SGCNN-driven predictions and DFT verifications, four novel catalysts in the L1(2) crystal space, including V3Ir(111), Tc3Hf(111), V3Ni(111), and Tc3Ta(111), are proposed as stable candidates that likely exhibit both a lower limiting potential and higher Faradaic efficiency in the NRR, relative to the reference Mo(110). The ML work combined with a statistical data analysis reveals that catalytic surfaces with an average d-orbital occupation between 4 and 6 could lower the limiting potential and potentially overcome the scaling relation in the NRR. | - |
dc.language | English | - |
dc.publisher | AMER CHEMICAL SOC | - |
dc.subject | AMMONIA-SYNTHESIS | - |
dc.subject | ELECTROCHEMICAL SYNTHESIS | - |
dc.subject | ATMOSPHERIC-PRESSURE | - |
dc.subject | NITROGEN REDUCTION | - |
dc.subject | LOW-TEMPERATURE | - |
dc.subject | CO2 REDUCTION | - |
dc.subject | ADSORPTION | - |
dc.subject | ELECTROCATALYSTS | - |
dc.subject | SUPPRESSION | - |
dc.subject | MONOLAYER | - |
dc.title | Artificial Intelligence to Accelerate the Discovery of N-2 Electroreduction Catalysts | - |
dc.type | Article | - |
dc.identifier.doi | 10.1021/acs.chemmater.9b03686 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | CHEMISTRY OF MATERIALS, v.32, no.2, pp.709 - 720 | - |
dc.citation.title | CHEMISTRY OF MATERIALS | - |
dc.citation.volume | 32 | - |
dc.citation.number | 2 | - |
dc.citation.startPage | 709 | - |
dc.citation.endPage | 720 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000510530500008 | - |
dc.identifier.scopusid | 2-s2.0-85078295727 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | AMMONIA-SYNTHESIS | - |
dc.subject.keywordPlus | ELECTROCHEMICAL SYNTHESIS | - |
dc.subject.keywordPlus | ATMOSPHERIC-PRESSURE | - |
dc.subject.keywordPlus | NITROGEN REDUCTION | - |
dc.subject.keywordPlus | LOW-TEMPERATURE | - |
dc.subject.keywordPlus | CO2 REDUCTION | - |
dc.subject.keywordPlus | ADSORPTION | - |
dc.subject.keywordPlus | ELECTROCATALYSTS | - |
dc.subject.keywordPlus | SUPPRESSION | - |
dc.subject.keywordPlus | MONOLAYER | - |
dc.subject.keywordAuthor | Artificial intelligence | - |
dc.subject.keywordAuthor | Nitrogen reduction reaction | - |
dc.subject.keywordAuthor | Electrocatalyst | - |
dc.subject.keywordAuthor | Density functional theory | - |
dc.subject.keywordAuthor | Neural network | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.