Full metadata record

DC Field Value Language
dc.contributor.authorKim, Myungjoon-
dc.contributor.authorYeo, Byung Chul-
dc.contributor.authorPark, Youngtae-
dc.contributor.authorLee, Hyuck Mo-
dc.contributor.authorHan, Sang Soo-
dc.contributor.authorKim, Donghun-
dc.date.accessioned2024-01-19T18:30:17Z-
dc.date.available2024-01-19T18:30:17Z-
dc.date.created2021-09-05-
dc.date.issued2020-01-28-
dc.identifier.issn0897-4756-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119070-
dc.description.abstractThe development of catalysts for the electrochemical N-2 reduction reaction (NRR) with a low limiting potential and high Faradaic efficiency is highly desirable but remains challenging. Here, to achieve acceleration, we develop and report a slab graph convolutional neural network (SGCNN), an accurate and flexible machine learning (ML) model that is suited for probing surface reactions in catalysis. With a self-accumulated database of 3040 surface calculations at the density-functional-theory (DFT) level, SGCNN predicted the binding energies, ranging over 8 eV, of five key adsorbates (H, N-2, N2H, NH, NH2) related to NRR performance with a mean absolute error (MAE) of only 0.23 eV. SGCNN only requires the low-level inputs of elemental properties available in the periodic table of elements and connectivity information of constituent atoms; thus, accelerations can be realized. Via a combined process of SGCNN-driven predictions and DFT verifications, four novel catalysts in the L1(2) crystal space, including V3Ir(111), Tc3Hf(111), V3Ni(111), and Tc3Ta(111), are proposed as stable candidates that likely exhibit both a lower limiting potential and higher Faradaic efficiency in the NRR, relative to the reference Mo(110). The ML work combined with a statistical data analysis reveals that catalytic surfaces with an average d-orbital occupation between 4 and 6 could lower the limiting potential and potentially overcome the scaling relation in the NRR.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectAMMONIA-SYNTHESIS-
dc.subjectELECTROCHEMICAL SYNTHESIS-
dc.subjectATMOSPHERIC-PRESSURE-
dc.subjectNITROGEN REDUCTION-
dc.subjectLOW-TEMPERATURE-
dc.subjectCO2 REDUCTION-
dc.subjectADSORPTION-
dc.subjectELECTROCATALYSTS-
dc.subjectSUPPRESSION-
dc.subjectMONOLAYER-
dc.titleArtificial Intelligence to Accelerate the Discovery of N-2 Electroreduction Catalysts-
dc.typeArticle-
dc.identifier.doi10.1021/acs.chemmater.9b03686-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCHEMISTRY OF MATERIALS, v.32, no.2, pp.709 - 720-
dc.citation.titleCHEMISTRY OF MATERIALS-
dc.citation.volume32-
dc.citation.number2-
dc.citation.startPage709-
dc.citation.endPage720-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000510530500008-
dc.identifier.scopusid2-s2.0-85078295727-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusAMMONIA-SYNTHESIS-
dc.subject.keywordPlusELECTROCHEMICAL SYNTHESIS-
dc.subject.keywordPlusATMOSPHERIC-PRESSURE-
dc.subject.keywordPlusNITROGEN REDUCTION-
dc.subject.keywordPlusLOW-TEMPERATURE-
dc.subject.keywordPlusCO2 REDUCTION-
dc.subject.keywordPlusADSORPTION-
dc.subject.keywordPlusELECTROCATALYSTS-
dc.subject.keywordPlusSUPPRESSION-
dc.subject.keywordPlusMONOLAYER-
dc.subject.keywordAuthorArtificial intelligence-
dc.subject.keywordAuthorNitrogen reduction reaction-
dc.subject.keywordAuthorElectrocatalyst-
dc.subject.keywordAuthorDensity functional theory-
dc.subject.keywordAuthorNeural network-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE