Full metadata record

DC Field Value Language
dc.contributor.authorChandra, Christian-
dc.contributor.authorCahyadi, Handi Setiadi-
dc.contributor.authorAlvin, Stevanus-
dc.contributor.authorDevina, Winda-
dc.contributor.authorPark, Jae-Ho-
dc.contributor.authorChang, Wonyoung-
dc.contributor.authorChung, Kyung Yoon-
dc.contributor.authorKwak, Sang Kyu-
dc.contributor.authorKim, Jaehoon-
dc.date.accessioned2024-01-19T18:30:37Z-
dc.date.available2024-01-19T18:30:37Z-
dc.date.created2021-09-05-
dc.date.issued2020-01-14-
dc.identifier.issn0897-4756-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119089-
dc.description.abstractSilicon oxycarbides (SiOCs) are considered promising anode materials for sodium-ion batteries. However, the mechanisms of Nation storage in SiOCs are not clear. In this study, the mechanism of Nation storage in high-temperature-synthesized SiOCs (1200-1400 degrees C) is examined. Phase separation of the oxygen (O)-rich and carbon (C)-rich SiOxCy domains of SiOC during synthesis was accompanied by the evolution of micropores, graphitic layers, and a silicon carbide (SiC) phase. The high-temperature-synthesized SiOCs exhibited a large voltage plateau capacity below 0.1 V (45-63% of the total capacity). Ex situ measurements and density functional theory simulations revealed that within the sloping voltage region, Nation uptake occurs mainly in the defects, micropores, C-rich SiOxCy phase, and some O-rich SiOxCy phases. In contrast, in the voltage plateau below 0.1 V, Na+-ion insertion into the O-rich SiOxCy phase and formation of Na-rich Si compounds are the main Nation uptake mechanisms. The generated SiC phase confers excellent long-term cyclability to the high-temperature-synthesized SiOxCy.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectHARD CARBON ANODES-
dc.subjectNA-ION BATTERIES-
dc.subjectHIGH-PERFORMANCE ANODE-
dc.subjectRICH SIOC ANODES-
dc.subjectAMORPHOUS-SILICON-
dc.subjectHIGH-CAPACITY-
dc.subjectELECTROCHEMICAL PERFORMANCE-
dc.subjectLITHIUM STORAGE-
dc.subjectCOMPOSITE ANODE-
dc.subjectSTABLE ANODE-
dc.titleRevealing the Sodium Storage Mechanism in High-Temperature-Synthesized Silicon Oxycarbides-
dc.typeArticle-
dc.identifier.doi10.1021/acs.chemmater.9b04018-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCHEMISTRY OF MATERIALS, v.32, no.1, pp.410 - 423-
dc.citation.titleCHEMISTRY OF MATERIALS-
dc.citation.volume32-
dc.citation.number1-
dc.citation.startPage410-
dc.citation.endPage423-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000507721600041-
dc.identifier.scopusid2-s2.0-85077464922-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusHARD CARBON ANODES-
dc.subject.keywordPlusNA-ION BATTERIES-
dc.subject.keywordPlusHIGH-PERFORMANCE ANODE-
dc.subject.keywordPlusRICH SIOC ANODES-
dc.subject.keywordPlusAMORPHOUS-SILICON-
dc.subject.keywordPlusHIGH-CAPACITY-
dc.subject.keywordPlusELECTROCHEMICAL PERFORMANCE-
dc.subject.keywordPlusLITHIUM STORAGE-
dc.subject.keywordPlusCOMPOSITE ANODE-
dc.subject.keywordPlusSTABLE ANODE-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE