Full metadata record

DC Field Value Language
dc.contributor.authorPark, S.H.-
dc.contributor.authorPark, H.-
dc.contributor.authorHur, K.-
dc.contributor.authorLee, S.-
dc.date.accessioned2024-01-19T18:32:12Z-
dc.date.available2024-01-19T18:32:12Z-
dc.date.created2021-09-02-
dc.date.issued2020-01-
dc.identifier.issn2576-6422-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119178-
dc.description.abstractSelf-assembled photonic crystals have proven to be a fascinating class of photonic materials for nonabsorbing structural colorizations over large areas and in diverse relevant applications, including tools for on-chip spectrometers and biosensors, platforms for reflective displays, and templates for energy devices. The most prevalent building blocks for the self-assembly of photonic crystals are spherical colloids and block copolymers (BCPs) because of the generic appeal of these materials, which can be crafted into large-area 3D lattices. However, because of the intrinsic limitations of these structures, these two building blocks are difficult to assemble into a direct rod-connected diamond lattice, which is considered to be a champion photonic crystal. Here, we present a DNA origami-route for a direct rod-connected diamond photonic crystal exhibiting a complete photonic bandgap (PBG) in the visible regime. Using a combination of electromagnetic, phononic, and mechanical numerical analyses, we identify (i) the structural constraints of the 50 megadalton-scale giant DNA origami building blocks that could self-assemble into a direct rod-connected diamond lattice with high accuracy, and (ii) the elastic moduli that are essentials for maintaining lattice integrity in a buffer solution. A solution molding process could enable the transformation of the as-assembled DNA origami lattice into a porous silicon- or germanium-coated composite crystal with enhanced refractive index contrast, in that a champion relative bandwidth for the photonic bandgap (i.e., 0.29) could become possible even for a relatively low volume fraction (i.e., 16 vol %). Copyright ? 2019 American Chemical Society.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleDesign of DNA Origami Diamond Photonic Crystals-
dc.typeArticle-
dc.identifier.doi10.1021/acsabm.9b01171-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Bio Materials, v.3, no.1, pp.747 - 756-
dc.citation.titleACS Applied Bio Materials-
dc.citation.volume3-
dc.citation.number1-
dc.citation.startPage747-
dc.citation.endPage756-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-85078661724-
dc.type.docTypeArticle-
dc.subject.keywordPlusBlock copolymers-
dc.subject.keywordPlusCrystal lattices-
dc.subject.keywordPlusDiamonds-
dc.subject.keywordPlusDisplay devices-
dc.subject.keywordPlusDNA-
dc.subject.keywordPlusElastic moduli-
dc.subject.keywordPlusEnergy gap-
dc.subject.keywordPlusPorous silicon-
dc.subject.keywordPlusRefractive index-
dc.subject.keywordPlusSols-
dc.subject.keywordPlusSpontaneous emission-
dc.subject.keywordPlusDiamond lattices-
dc.subject.keywordPlusDiamond photonic crystals-
dc.subject.keywordPlusDna origamis-
dc.subject.keywordPlusEffective elastic modulus-
dc.subject.keywordPlusOn-chip spectrometers-
dc.subject.keywordPlusPhotonic bandgap (PBG)-
dc.subject.keywordPlusSelf assembled photonic crystals-
dc.subject.keywordPlusStructural constraints-
dc.subject.keywordPlusPhotonic crystals-
dc.subject.keywordAuthordiamond lattice-
dc.subject.keywordAuthorDNA origami-
dc.subject.keywordAuthoreffective elastic moduli-
dc.subject.keywordAuthorphotonic bandgap (PBG)-
dc.subject.keywordAuthorphotonic crystals-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE