Full metadata record

DC Field Value Language
dc.contributor.authorManekkathodi, Afsal-
dc.contributor.authorChen, Bin-
dc.contributor.authorKim, Junghwan-
dc.contributor.authorBaek, Se-Woong-
dc.contributor.authorScheffel, Benjamin-
dc.contributor.authorHou, Yi-
dc.contributor.authorOuellette, Olivier-
dc.contributor.authorSaidaminov, Makhsud I.-
dc.contributor.authorVoznyy, Oleksandr-
dc.contributor.authorMadhavan, Vinod E.-
dc.contributor.authorBelaidi, Abdelhak-
dc.contributor.authorAshhab, Sahel-
dc.contributor.authorSargent, Edward-
dc.date.accessioned2024-01-19T18:33:11Z-
dc.date.available2024-01-19T18:33:11Z-
dc.date.created2022-01-25-
dc.date.issued2019-12-
dc.identifier.issn2050-7488-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119235-
dc.description.abstractMulti-junction solar cells based on solution-processed metal halide perovskites offer a route to increased power conversion efficiency (PCE); however, the limited options for infrared (IR)-absorbing back cells have constrained progress. Colloidal quantum dot (CQD)-based solar cells, which are solution-processed and have bandgaps tunable to wavelengths beyond 1000 nm, are attractive candidates for this role. Here we report a solution-processed four-terminal (4T) tandem solar cell comprised of a perovskite front cell and a CQD back cell. The 4T tandem provides a PCE exceeding 20%, the highest PCE reported to date for a perovskite-CQD tandem solar cell. The front semi-transparent perovskite solar cell employs a dielectric-metal-dielectric (DMD) electrode constructed from a metal film (silver/gold) sandwiched between dielectric (MoO3) layers. The highest-performing front semi-transparent perovskite solar cells exhibit a PCE of similar to 18%. By tuning the wavelength-dependent transmittance of the DMD layer based on the zero-reflection condition of optical admittance, we build semi-transparent perovskite solar cells with a 25% increase in IR transmittance compared to baseline devices. The back cell is fabricated based on an IR CQD absorber layer complementary to the IR transmittance of the semi-transparent perovskite front cell. Solution-processed hybrid tandem photovoltaics (PV) combining these technologies offer to contribute to higher-efficiency solar cells for next-generation flexible photovoltaic (PV) devices.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.titleSolution-processed perovskite-colloidal quantum dot tandem solar cells for photon collection beyond 1000 nm-
dc.typeArticle-
dc.identifier.doi10.1039/c9ta11462a-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF MATERIALS CHEMISTRY A, v.7, no.45, pp.26020 - 26028-
dc.citation.titleJOURNAL OF MATERIALS CHEMISTRY A-
dc.citation.volume7-
dc.citation.number45-
dc.citation.startPage26020-
dc.citation.endPage26028-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000509471800029-
dc.identifier.scopusid2-s2.0-85075398644-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusEFFICIENCY-
dc.subject.keywordPlusELECTRODE-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE