Full metadata record

DC Field Value Language
dc.contributor.authorJang, Jae Won-
dc.contributor.authorKwon, Young Chan-
dc.contributor.authorLim, Hwasup-
dc.contributor.authorChoi, Ouk-
dc.date.accessioned2024-01-19T18:33:29Z-
dc.date.available2024-01-19T18:33:29Z-
dc.date.created2021-09-05-
dc.date.issued2019-12-
dc.identifier.issn2169-3536-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119253-
dc.description.abstractThree-dimensional human shape reconstruction is important in many applications, such as virtual or augmented reality (VR/AR), virtual clothing fitting, and healthcare. In this paper, we propose a learning-based method for reconstructing a whole-body point cloud from a single front-view human-depth image. Because actual depth images typically suffer from noise and missing data, an accurate point cloud cannot be reasonably obtained by simply predicting a back-view depth image. To solve this problem, we propose to use convolutional neural networks that not only predict a back-view depth image but also refine the input front-view depth image. To train the networks, we propose a carefully designed method for generating synthetic but realistic human-depth images with noise and missing data. Experiments show that the proposed method is effective for obtaining seamless whole-body point clouds. In addition, the experiments show that the networks trained on the synthetic depth images are ready for application to actual depth images.-
dc.languageEnglish-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.subjectHUMAN BODIES-
dc.subjectRECONSTRUCTION-
dc.subjectSHAPE-
dc.titleCNN-Based Denoising, Completion, and Prediction of Whole-Body Human-Depth Images-
dc.typeArticle-
dc.identifier.doi10.1109/ACCESS.2019.2957862-
dc.description.journalClass1-
dc.identifier.bibliographicCitationIEEE ACCESS, v.7, pp.175842 - 175856-
dc.citation.titleIEEE ACCESS-
dc.citation.volume7-
dc.citation.startPage175842-
dc.citation.endPage175856-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000509399500055-
dc.identifier.scopusid2-s2.0-85076969995-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryTelecommunications-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaTelecommunications-
dc.type.docTypeArticle-
dc.subject.keywordPlusHUMAN BODIES-
dc.subject.keywordPlusRECONSTRUCTION-
dc.subject.keywordPlusSHAPE-
dc.subject.keywordAuthor3D human shape-
dc.subject.keywordAuthorconvolutional neural networks-
dc.subject.keywordAuthordeep learning-
dc.subject.keywordAuthorsingle depth image-
dc.subject.keywordAuthorsynthetic data generation-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE