Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Park, Min Hyuk | - |
dc.contributor.author | Kim, Han Joon | - |
dc.contributor.author | Lee, Gwangyeob | - |
dc.contributor.author | Park, Jaehong | - |
dc.contributor.author | Lee, Young Hwan | - |
dc.contributor.author | Kim, Yu Jin | - |
dc.contributor.author | Moon, Taehwan | - |
dc.contributor.author | Kim, Keum | - |
dc.contributor.author | Hyun, Seung Dam | - |
dc.contributor.author | Park, Hyun Woo | - |
dc.contributor.author | Chang, Hye Jung | - |
dc.contributor.author | Choi, Jung-Hae | - |
dc.contributor.author | Hwang, Cheol Seong | - |
dc.date.accessioned | 2024-01-19T18:33:33Z | - |
dc.date.available | 2024-01-19T18:33:33Z | - |
dc.date.created | 2021-09-05 | - |
dc.date.issued | 2019-12 | - |
dc.identifier.issn | 1931-9401 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/119257 | - |
dc.description.abstract | Many applications, most notably memory and optical devices use ferroelectric materials. For many years the evolution of the field has revolved around understanding the materials science behind complex structures like artificial superlattices based mainly on perovskite-structure oxides. The recent discovery of ferroelectricity in fluorite-structure oxides has opened a new research direction. However, the formation of unstable or metastable phases in atomic layer deposited fluorite oxides has inhibited a full understanding of the origin of ferroelectricity in these materials. This work reports a comprehensive study of the structural and electrical properties of HfO2 and ZrO2 nanolaminates and superlattices of various layering combinations and thicknesses. The structural investigations provide insight into how to optimize conditions during atomic layer deposition to avoid the formation of unstable phases. Investigations showed that the starting layer of the material, the thickness ratio between HfO2 and ZrO2 layers, and the single-layer thickness strongly effected the ferroelectric properties. The influence of single-layer thickness related most strongly to the presence of interfacial nonferroelectric layers between the HfO2 and ZrO2 deposits. These features make the structures highly promising candidates for next-generation memory applications. Potentially other fluorite-structure oxides might also function as building blocks for nanolaminates and superlattices. Published under license by AIP Publishing. | - |
dc.language | English | - |
dc.publisher | AMER INST PHYSICS | - |
dc.subject | TOTAL-ENERGY CALCULATIONS | - |
dc.subject | THIN-FILMS | - |
dc.subject | POLARIZATION | - |
dc.subject | NANOSCALE | - |
dc.subject | ENDURANCE | - |
dc.subject | ZRO2 | - |
dc.title | A comprehensive study on the mechanism of ferroelectric phase formation in hafnia-zirconia nanolaminates and superlattices | - |
dc.type | Article | - |
dc.identifier.doi | 10.1063/1.5118737 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | APPLIED PHYSICS REVIEWS, v.6, no.4 | - |
dc.citation.title | APPLIED PHYSICS REVIEWS | - |
dc.citation.volume | 6 | - |
dc.citation.number | 4 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000515153700015 | - |
dc.identifier.scopusid | 2-s2.0-85074992068 | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.relation.journalResearchArea | Physics | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | TOTAL-ENERGY CALCULATIONS | - |
dc.subject.keywordPlus | THIN-FILMS | - |
dc.subject.keywordPlus | POLARIZATION | - |
dc.subject.keywordPlus | NANOSCALE | - |
dc.subject.keywordPlus | ENDURANCE | - |
dc.subject.keywordPlus | ZRO2 | - |
dc.subject.keywordAuthor | ferroelectrics | - |
dc.subject.keywordAuthor | nanolaminates | - |
dc.subject.keywordAuthor | hafnia | - |
dc.subject.keywordAuthor | zirconia | - |
dc.subject.keywordAuthor | phase transition | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.