Full metadata record

DC Field Value Language
dc.contributor.authorKim, Daesin-
dc.contributor.authorKo, Tae Yun-
dc.contributor.authorKim, Hyerim-
dc.contributor.authorLee, Gun Hee-
dc.contributor.authorCho, Sangho-
dc.contributor.authorKoo, Chong Min-
dc.date.accessioned2024-01-19T18:33:37Z-
dc.date.available2024-01-19T18:33:37Z-
dc.date.created2021-09-05-
dc.date.issued2019-12-
dc.identifier.issn1936-0851-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119261-
dc.description.abstractHerein, we demonstrate a simple and versatile way for preparing stable Ti3C2Tx MXene dispersions in nonpolar organic solvents through a simultaneous interfacial chemical grafting reaction and phase transfer method. Alkylphosphonic acid ligands were chemically grafted on the hydroxyl terminal groups of Ti3C2Tx flakes at the liquid-liquid interface between water and water-immiscible organic medium to form a covalent Ti-O-P bond via interfacial nucleophilic addition and sequential condensation reaction at room temperature; the surface-functionalized Ti3C2Tx flakes concurrently migrated from the aqueous phase to the organic phase. Unlike conventional surface chemical modification methods that require many complex and tedious steps, this is a simple and easy process for fabricating a Ti3C2Tx organic dispersion in various organic solvents, from highly polar to nonpolar. The nonpolar Ti3C2Tx dispersion in chloroform also exhibits strong oxidation resistance and stable long-term storage. This approach provides an opportunity for preparing MXene nanocomposites with nonpolar polymeric matrices that are soluble in organic media for future applications such as stretchable electrode.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectSURFACE MODIFICATION-
dc.subjectCARBIDE MXENE-
dc.subjectNANOPARTICLES-
dc.subjectADSORPTION-
dc.subjectMEMBRANE-
dc.titleNonpolar Organic Dispersion of 2D Ti3C2Tx MXene Flakes via Simultaneous Interfacial Chemical Grafting and Phase Transfer Method-
dc.typeArticle-
dc.identifier.doi10.1021/acsnano.9b04088-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS NANO, v.13, no.12, pp.13818 - 13828-
dc.citation.titleACS NANO-
dc.citation.volume13-
dc.citation.number12-
dc.citation.startPage13818-
dc.citation.endPage13828-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000505633300022-
dc.identifier.scopusid2-s2.0-85075677633-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusSURFACE MODIFICATION-
dc.subject.keywordPlusCARBIDE MXENE-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusADSORPTION-
dc.subject.keywordPlusMEMBRANE-
dc.subject.keywordAuthorMXene-
dc.subject.keywordAuthortwo-dimensional nanomaterials-
dc.subject.keywordAuthorinterfacial condensation reaction-
dc.subject.keywordAuthorphase transfer-
dc.subject.keywordAuthornonpolar organic dispersion-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE