Full metadata record

DC Field Value Language
dc.contributor.authorKim, Ho Young-
dc.contributor.authorKim, Jong Min-
dc.contributor.authorHa, Yoonhoo-
dc.contributor.authorWoo, Jinwoo-
dc.contributor.authorByun, Ayoung-
dc.contributor.authorShin, Tae Joo-
dc.contributor.authorPark, Kang Hyun-
dc.contributor.authorJeong, Hu Young-
dc.contributor.authorKim, Hyungjun-
dc.contributor.authorKim, Jin Young-
dc.contributor.authorJoo, Sang Hoon-
dc.date.accessioned2024-01-19T18:33:58Z-
dc.date.available2024-01-19T18:33:58Z-
dc.date.created2021-09-05-
dc.date.issued2019-12-
dc.identifier.issn2155-5435-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119284-
dc.description.abstractPt-based intermetallic nanostructures have demonstrated higher electrocatalytic performances compared to random alloy structures. However, the origin of their enhanced catalytic properties remains elusive. Furthermore, a robust synthetic strategy for well-defined intermetallic nanostructures represents a challenge. Here, we reveal by combining theoretical and experimental results that the activity enhancement in intermetallic structures for the oxygen reduction reaction (ORR) originates from an intensified ligand effect. We prepared well-defined model nanocatalysts via confined nanospace-directed synthesis using mesoporous silica templates, which allows precise control over the size and shape of nanostructures. Importantly, this method can transform disordered alloy nanostructures into intermetallic analogues without agglomeration, enabling decoupling of an atomic ordering effect in catalysis. The prepared ordered intermetallic Pt3Co nanowires (O-Pt3Co NWs) can benefit from an intensified ligand effect, Pt-skin layer, and agglomeration-tolerant contiguous structure, which led to their enhanced ORR activity and durability compared to disordered alloy Pt3Co nanowires (D-Pt3Co NWs) and Pt/C catalysts. The multifunctionality of O-Pt3Co NWs is demonstrated with their higher activity and durability in the alkaline hydrogen evolution reaction and acidic methanol oxidation reaction than those of D-Pt3Co NWs and Pt/C catalysts. Furthermore, a proton exchange membrane fuel cell cathode based on O-Pt3Co NWs shows much better durability than a Pt/C-based one.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectOXYGEN REDUCTION ACTIVITY-
dc.subjectMEMBRANE FUEL-CELLS-
dc.subjectPLATINUM NANOWIRES-
dc.subjectFEPT NANOPARTICLES-
dc.subjectMESOPOROUS SILICA-
dc.subjectSTRAIN CONTROL-
dc.subjectMETAL-
dc.subjectCATALYSTS-
dc.subjectSEGREGATION-
dc.subjectPERFORMANCE-
dc.titleActivity Origin and Multifunctionality of Pt-Based Intermetallic Nanostructures for Efficient Electrocatalysis-
dc.typeArticle-
dc.identifier.doi10.1021/acscatal.9b03155-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS CATALYSIS, v.9, no.12, pp.11242 - 11254-
dc.citation.titleACS CATALYSIS-
dc.citation.volume9-
dc.citation.number12-
dc.citation.startPage11242-
dc.citation.endPage11254-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000502169900055-
dc.identifier.scopusid2-s2.0-85074993910-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalResearchAreaChemistry-
dc.type.docTypeArticle-
dc.subject.keywordPlusOXYGEN REDUCTION ACTIVITY-
dc.subject.keywordPlusMEMBRANE FUEL-CELLS-
dc.subject.keywordPlusPLATINUM NANOWIRES-
dc.subject.keywordPlusFEPT NANOPARTICLES-
dc.subject.keywordPlusMESOPOROUS SILICA-
dc.subject.keywordPlusSTRAIN CONTROL-
dc.subject.keywordPlusMETAL-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordPlusSEGREGATION-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordAuthorPt-based intermetallic nanostructures-
dc.subject.keywordAuthoractivity origin-
dc.subject.keywordAuthormultifunctional electrocatalysis-
dc.subject.keywordAuthorfree-standing catalysts-
dc.subject.keywordAuthorproton exchange membrane fuel cells-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE