Full metadata record

DC Field Value Language
dc.contributor.authorLim, Hunhee-
dc.contributor.authorKim, Donghun-
dc.contributor.authorChoi, Min-Jae-
dc.contributor.authorSargent, Edward H.-
dc.contributor.authorJung, Yeon Sik-
dc.contributor.authorKim, Jin Young-
dc.date.accessioned2024-01-19T18:34:13Z-
dc.date.available2024-01-19T18:34:13Z-
dc.date.created2021-09-04-
dc.date.issued2019-12-
dc.identifier.issn1614-6832-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119299-
dc.description.abstractQuantum-dot (QD) photovoltaics (PVs) offer promise as energy-conversion devices; however, their open-circuit-voltage (V-OC) deficit is excessively large. Previous work has identified factors related to the QD active layer that contribute to V-OC loss, including sub-bandgap trap states and polydispersity in QD films. This work focuses instead on layer interfaces, and reveals a critical source of V-OC loss: electron leakage at the QD/hole-transport layer (HTL) interface. Although large-bandgap organic materials in HTL are potentially suited to minimizing leakage current, dipoles that form at an organic/metal interface impede control over optimal band alignments. To overcome the challenge, a bilayer HTL configuration, which consists of semiconducting alpha-sexithiophene (alpha-6T) and metallic poly(3,4-ethylenedioxythiphene) polystyrene sulfonate (PEDOT:PSS), is introduced. The introduction of the PEDOT:PSS layer between alpha-6T and Au electrode suppresses the formation of undesired interfacial dipoles and a Schottky barrier for holes, and the bilayer HTL provides a high electron barrier of 1.35 eV. Using bilayer HTLs enhances the V-OC by 74 mV without compromising the J(SC) compared to conventional MoO3 control devices, leading to a best power conversion efficiency of 9.2% (>40% improvement relative to relevant controls). Wider applicability of the bilayer strategy is demonstrated by a similar structure based on shallow lowest-unoccupied-molecular-orbital (LUMO) levels.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleSuppressing Interfacial Dipoles to Minimize Open-Circuit Voltage Loss in Quantum Dot Photovoltaics-
dc.typeArticle-
dc.identifier.doi10.1002/aenm.201901938-
dc.description.journalClass1-
dc.identifier.bibliographicCitationADVANCED ENERGY MATERIALS, v.9, no.48-
dc.citation.titleADVANCED ENERGY MATERIALS-
dc.citation.volume9-
dc.citation.number48-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000493157200001-
dc.identifier.scopusid2-s2.0-85074603899-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusENERGY-LEVEL ALIGNMENT-
dc.subject.keywordPlusSUB-BANDGAP STATES-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusHOLE-EXTRACTION-
dc.subject.keywordPlusSOLAR-CELLS-
dc.subject.keywordPlusCARRIER MOBILITY-
dc.subject.keywordPlusCHARGE-TRANSPORT-
dc.subject.keywordPlusMETAL-OXIDE-
dc.subject.keywordPlusEFFICIENT-
dc.subject.keywordPlusPOLYMER-
dc.subject.keywordAuthorband engineering-
dc.subject.keywordAuthorhole transport layers-
dc.subject.keywordAuthorinterfacial dipole-
dc.subject.keywordAuthorquantum dot solar cells-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE