Full metadata record

DC Field Value Language
dc.contributor.authorMoeez, Iqra-
dc.contributor.authorJung, Hun-Gi-
dc.contributor.authorLim, Hee-Dae-
dc.contributor.authorChung, Kyung Yoon-
dc.date.accessioned2024-01-19T19:00:16Z-
dc.date.available2024-01-19T19:00:16Z-
dc.date.created2021-09-05-
dc.date.issued2019-11-06-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119336-
dc.description.abstractMost active materials for sodium-ion batteries suffer from the problem of low-energy efficiency in the first cycle because of the loss of active sodium ions consumed for the formation of a solid electrolyte interface. To make up for the lost sodium ion, presodiation treatments have been applied, which are effective ways to mitigate the low initial efficiency. Here, we developed a direct-contact method to achieve the presodiation for cathode and anode electrodes and demonstrated the enhanced Coulombic efficiency of the first cycle with improved cyclability and reversible capacity. Moreover, we proved the formation of a thick passivation layer at the cathode-electrolyte interface during the presodiation process; this contributes to the improved cycle stability by preventing the dissolution of the active material and its deposition on the anode surface. The direct-contact method is a simple and cost-effective way to complete presodiation, and this simple process will be widely applicable for practical battery manufacturing.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.subjectPOSITIVE ELECTRODE-
dc.subjectCATHODE MATERIALS-
dc.subjectCAPACITY-
dc.subjectOVERCOME-
dc.subjectMN-
dc.subjectNI-
dc.titlePresodiation Strategies and Their Effect on Electrode-Electrolyte Interphases for High-Performance Electrodes for Sodium-Ion Batteries-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.9b14381-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.11, no.44, pp.41394 - 41401-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume11-
dc.citation.number44-
dc.citation.startPage41394-
dc.citation.endPage41401-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000495769900043-
dc.identifier.scopusid2-s2.0-85074402048-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusPOSITIVE ELECTRODE-
dc.subject.keywordPlusCATHODE MATERIALS-
dc.subject.keywordPlusCAPACITY-
dc.subject.keywordPlusOVERCOME-
dc.subject.keywordPlusMN-
dc.subject.keywordPlusNI-
dc.subject.keywordAuthorpresodiation-
dc.subject.keywordAuthorsodium-ion batteries-
dc.subject.keywordAuthorP2-Na0.67Fe0.5Mn0.5O2-
dc.subject.keywordAuthorhard carbon-
dc.subject.keywordAuthorfull cell-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE