Full metadata record

DC Field Value Language
dc.contributor.authorRahman, Md Ataur-
dc.contributor.authorHwang, Hongik-
dc.contributor.authorCho, Yoonjeong-
dc.contributor.authorRhim, Hyewhon-
dc.date.accessioned2024-01-19T19:00:40Z-
dc.date.available2024-01-19T19:00:40Z-
dc.date.created2022-01-10-
dc.date.issued2019-11-
dc.identifier.issn1942-0900-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119358-
dc.description.abstractThe addition of O-linked beta-N-acetylglucosamine (O-GlcNAcylation) to serine and threonine residues is a common posttranslational modification of intracellular proteins which modulates protein functions and neurodegenerative diseases, controlled by a single pair of enzymes, O-GlcNAcase (OGA), and O-GlcNAcylation transferase (OGT). Autophagy is a cellular recycling pathway activated by stress and nutrient signaling; however, the mechanism by which O-GlcNAcylation modification regulates autophagy in cortical astrocytes is poorly understood. Here, we report that increased O-GlcNAcylation by the suppression of OGA activity using thiamet-G and OGA siRNA did not affect autophagy, whereas decreased O-GlcNAcylation caused by OGT inhibition by alloxan and OGT siRNA increased autophagy. OGT inhibitor and siRNA accumulated LC3 puncta, and cotreatment with chloroquine (CQ), an autophagy inhibitor, significantly increased LC3 puncta and LC3-II protein, confirming that decreased O-GlcNAcylation promotes autophagic flux. In particular, we found that OGT knockdown increases the fusion between autophagosomes as well as lysosomes and stimulates autophagy to promote lysosomal-associated membrane protein 1 (LAMP-1). Additionally, decreasing O-GlcNAcylation by treatment with alloxan, OGT siRNA, and OGA overexpression significantly decreased the level of autophagy substrate SQSTM1/p62, indicating that autophagic degradation was activated. Together, our study reveals a mechanism by which the modulation of O-GlcNAcylation modification regulates autophagy in mouse cortical astrocytes.-
dc.languageEnglish-
dc.publisherLandes Bioscience-
dc.titleModulation of O-GlcNAcylation Regulates Autophagy in Cortical Astrocytes-
dc.typeArticle-
dc.identifier.doi10.1155/2019/6279313-
dc.description.journalClass1-
dc.identifier.bibliographicCitationOxidative Medicine and Cellular Longevity, v.2019-
dc.citation.titleOxidative Medicine and Cellular Longevity-
dc.citation.volume2019-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000584654700001-
dc.identifier.scopusid2-s2.0-85075715895-
dc.relation.journalWebOfScienceCategoryCell Biology-
dc.relation.journalResearchAreaCell Biology-
dc.type.docTypeArticle-
dc.subject.keywordPlusGLCNAC-MODIFICATION-
dc.subject.keywordPlusMOUSE MODEL-
dc.subject.keywordPlusEXPRESSION-
dc.subject.keywordPlusINHIBITOR-
dc.subject.keywordPlusNEURODEGENERATION-
dc.subject.keywordPlusPHOSPHORYLATION-
dc.subject.keywordPlusMECHANISMS-
dc.subject.keywordPlusCLEARANCE-
dc.subject.keywordPlusDISEASE-
dc.subject.keywordPlusLC3-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE