Full metadata record

DC Field Value Language
dc.contributor.authorLi, Xiaowei-
dc.contributor.authorMizuseki, Hiroshi-
dc.contributor.authorPai, Sung Jin-
dc.contributor.authorLee, Kwang-Ryeol-
dc.date.accessioned2024-01-19T19:00:47Z-
dc.date.available2024-01-19T19:00:47Z-
dc.date.created2021-09-05-
dc.date.issued2019-11-
dc.identifier.issn0927-0256-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119365-
dc.description.abstractThe growth behavior of amorphous carbon (a-C) film was studied by reactive molecular dynamics simulation using the atom-by-atom deposition approach. Various reactive force field (ReaxFF) models were compared in terms of the structural properties of the resulting a-C films. By linking the structural properties of the film with the difference in the parameter sets of the ReaxFF models, we reveal that the carbon triple bond stabilization energy in the ReaxFF model, v(trip), significantly affects the growth dynamics and structural evolution of the simulated a-C films. When the negative v(trip) value is too high, the generation of a large number of C-C dimers and triple bond-terminated chain structures induces an etching-like process. In contrast, too small negative value results in an overestimation of both the formation energy for C-C dimers and the bonding energy for terminal triple bonds. By ab initio calculation of the triple bond and comparing it with the molecular static calculation using the ReaxFF models, we tailored the v(trip), value to - 13.34 kcal/mole, and the simulated a-C film has an atomic structure comparable with the existing experimental and theoretical results.-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.subjectDIAMOND-LIKE CARBON-
dc.subjectFORCE-FIELD-
dc.subjectSTRUCTURAL-PROPERTIES-
dc.subjectFRICTION-
dc.subjectREAXFF-
dc.subjectFILMS-
dc.subjectGRAPHITIZATION-
dc.subjectEVOLUTION-
dc.subjectCOATINGS-
dc.subjectENERGY-
dc.titleReactive molecular dynamics simulation of the amorphous carbon growth: Effect of the carbon triple bonds-
dc.typeArticle-
dc.identifier.doi10.1016/j.commatsci.2019.109143-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCOMPUTATIONAL MATERIALS SCIENCE, v.169-
dc.citation.titleCOMPUTATIONAL MATERIALS SCIENCE-
dc.citation.volume169-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000483683900049-
dc.identifier.scopusid2-s2.0-85073706557-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusDIAMOND-LIKE CARBON-
dc.subject.keywordPlusFORCE-FIELD-
dc.subject.keywordPlusSTRUCTURAL-PROPERTIES-
dc.subject.keywordPlusFRICTION-
dc.subject.keywordPlusREAXFF-
dc.subject.keywordPlusFILMS-
dc.subject.keywordPlusGRAPHITIZATION-
dc.subject.keywordPlusEVOLUTION-
dc.subject.keywordPlusCOATINGS-
dc.subject.keywordPlusENERGY-
dc.subject.keywordAuthorTriple bond-
dc.subject.keywordAuthorDynamic growth-
dc.subject.keywordAuthorAmorphous carbon-
dc.subject.keywordAuthorMolecular dynamics-
dc.subject.keywordAuthorReaxFF potential-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE