Full metadata record

DC Field Value Language
dc.contributor.authorKim, A-Young-
dc.contributor.authorArdhi, Ryanda Enggar Anugrah-
dc.contributor.authorLiu, Guicheng-
dc.contributor.authorKim, Ji Young-
dc.contributor.authorShin, Hyun-Jin-
dc.contributor.authorByun, Dongjin-
dc.contributor.authorLee, Joong Kee-
dc.date.accessioned2024-01-19T19:01:44Z-
dc.date.available2024-01-19T19:01:44Z-
dc.date.created2021-09-04-
dc.date.issued2019-11-
dc.identifier.issn0008-6223-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119419-
dc.description.abstractA hierarchical hollow SnO/SnO2 heterostructure anode surrounded by a dual carbon layer (DCL@SnO/SnO2), inner (host) and outer carbon layers, was successfully designed via a simple hydrothermal method with a single Sn precursor to achieving high-performance Li-ion batteries (LIBs) and Li-ion capacitors (LICs). The carbon nanotube (CNT)-based inner carbon host and an ultrathin outer amorphous carbon layer introduced at the SnO/SnO2 heterostructure had good elasticity and high electrical properties to prevent volume change and ensure fast Li-ion transport during cycling, respectively. Meanwhile, the SnO/SnO2 heterostructure comprising p-type SnO and n-type SnO2 facilitated further fast interfacial Liion transfer within the p-n SnO/SnO2 heterojunction anode via the acceleration effect induced by the built-in electric field (BEF). The resulting half cells LIBs consisting DCL@SnO/SnO2 anode shows a high reversible specific capacity of 902.1 mAh g(-1) after 500 cycles at a current density of 1400 mA g(-1). The specific capacity of 347.04 mAh g(-1) was still maintained even at a high current density of 10 000 mA g(-1). Moreover, the maximum energy and power density of 125 W kg(-1) and 200 Wh kg(-1), respectively, were achieved from the half cells LIC comprising DCL@SnO/SnO2 anode (LIC-DCL@SnO/SnO2). (C) 2019 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectELECTRODE-
dc.subjectTINB2O7-
dc.titleHierarchical hollow dual Core-Shell carbon nanowall-encapsulated p-n SnO/SnO2 heterostructured anode for high-performance lithium-ion-based energy storage-
dc.typeArticle-
dc.identifier.doi10.1016/j.carbon.2019.07.001-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCARBON, v.153, pp.62 - 72-
dc.citation.titleCARBON-
dc.citation.volume153-
dc.citation.startPage62-
dc.citation.endPage72-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000485054200008-
dc.identifier.scopusid2-s2.0-85068465865-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusELECTRODE-
dc.subject.keywordPlusTINB2O7-
dc.subject.keywordAuthorHierarchical-
dc.subject.keywordAuthorpen SnO/SnO2 heterostructure-
dc.subject.keywordAuthorhollow dual CoreeShell carbon-
dc.subject.keywordAuthorlithium-ion-based energy storage-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE