Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Koong, Z. X. | - |
dc.contributor.author | Scerri, D. | - |
dc.contributor.author | Rambach, M. | - |
dc.contributor.author | Santana, T. S. | - |
dc.contributor.author | Park, S., I | - |
dc.contributor.author | Song, J. D. | - |
dc.contributor.author | Gauger, E. M. | - |
dc.contributor.author | Gerardot, B. D. | - |
dc.date.accessioned | 2024-01-19T19:02:06Z | - |
dc.date.available | 2024-01-19T19:02:06Z | - |
dc.date.created | 2021-09-05 | - |
dc.date.issued | 2019-10-16 | - |
dc.identifier.issn | 0031-9007 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/119441 | - |
dc.description.abstract | Coherent generation of indistinguishable single photons is crucial for many quantum communication and processing protocols. Solid-state realizations of two-level atomic transitions or three-level spin-Lambda systems offer significant advantages over their atomic counterparts for this purpose, albeit decoherence can arise due to environmental couplings. One popular approach to mitigate dephasing is to operate in the weak-excitation limit, where the excited-state population is minimal and coherently scattered photons dominate over incoherent emission. Here we probe the coherence of photons produced using two-level and spin-Lambda solid-state systems. We observe that the coupling of the atomiclike transitions to the vibronic transitions of the crystal lattice is independent of the driving strength, even for detuned excitation using the spin-Lambda configuration. We apply a polaron master equation to capture the non-Markovian dynamics of the vibrational manifolds. These results provide insight into the fundamental limitations to photon coherence from solid-state quantum emitters. | - |
dc.language | English | - |
dc.publisher | AMER PHYSICAL SOC | - |
dc.subject | QUANTUM-DOT SPIN | - |
dc.subject | ENTANGLEMENT | - |
dc.subject | EFFICIENCY | - |
dc.subject | DYNAMICS | - |
dc.title | Fundamental Limits to Coherent Photon Generation with Solid-State Atomlike Transitions | - |
dc.type | Article | - |
dc.identifier.doi | 10.1103/PhysRevLett.123.167402 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | PHYSICAL REVIEW LETTERS, v.123, no.16 | - |
dc.citation.title | PHYSICAL REVIEW LETTERS | - |
dc.citation.volume | 123 | - |
dc.citation.number | 16 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000490478600009 | - |
dc.identifier.scopusid | 2-s2.0-85073833607 | - |
dc.relation.journalWebOfScienceCategory | Physics, Multidisciplinary | - |
dc.relation.journalResearchArea | Physics | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | QUANTUM-DOT SPIN | - |
dc.subject.keywordPlus | ENTANGLEMENT | - |
dc.subject.keywordPlus | EFFICIENCY | - |
dc.subject.keywordPlus | DYNAMICS | - |
dc.subject.keywordAuthor | Quantum dots | - |
dc.subject.keywordAuthor | quantum optics | - |
dc.subject.keywordAuthor | microcavities | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.