Full metadata record

DC Field Value Language
dc.contributor.authorHa, Yu-Mi-
dc.contributor.authorKim, Young-O-
dc.contributor.authorKim, Young-Nam-
dc.contributor.authorKim, Jaewoo-
dc.contributor.authorLee, Jae-Suk-
dc.contributor.authorCho, Jae Whan-
dc.contributor.authorEndo, Morinobu-
dc.contributor.authorMuramatsu, Hiroyuki-
dc.contributor.authorKim, Yoong Ahm-
dc.contributor.authorJung, Yong Chae-
dc.date.accessioned2024-01-19T19:02:13Z-
dc.date.available2024-01-19T19:02:13Z-
dc.date.created2021-09-04-
dc.date.issued2019-10-15-
dc.identifier.issn1359-8368-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119448-
dc.description.abstractIn this study, boron-doped single-walled carbon nanotubes (SWCNTs) were synthesized by high-temperature heat treatment (1300 degrees C) with a boric acid precursor and SWCNTs instead of the conventional chemical doping process. Then, these boron-doped single-walled carbon nanotubes (B-SWCNTs) were added to polyurethane to prepare polyurethane nanocomposites having excellent thermal and mechanical properties. Changes in properties that occurred due to structural changes inside the composite were investigated as the added amount of nanofiller was increased. In particular, a near-infrared (NIR) laser (808 nm) was directly irradiated on the nanocomposite film to induce photothermal properties on the surface of the B-SWCNTs. In the case of the PU nanocomposite film with a filler content of 3 wt%, a self-heating film material that rapidly heated to 250 degrees C within 10 s was developed. The newly developed material can be applied to electronic devices and products as a heat-generating coating material, de-icing of airplane, a heat sink, for bio-sensing, etc., using a moulding process.-
dc.languageEnglish-
dc.publisherELSEVIER SCI LTD-
dc.subjectMECHANICAL-PROPERTIES-
dc.subjectCOMPOSITE NANOFIBERS-
dc.subjectFUNCTIONALIZATION-
dc.subjectNANOPARTICLES-
dc.subjectCOPOLYMERS-
dc.subjectDISPERSION-
dc.titleRapidly self-heating shape memory polyurethane nanocomposite with boron-doped single-walled carbon nanotubes using near-infrared laser-
dc.typeArticle-
dc.identifier.doi10.1016/j.compositesb.2019.107065-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCOMPOSITES PART B-ENGINEERING, v.175-
dc.citation.titleCOMPOSITES PART B-ENGINEERING-
dc.citation.volume175-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000488418800005-
dc.identifier.scopusid2-s2.0-85068169692-
dc.relation.journalWebOfScienceCategoryEngineering, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMaterials Science, Composites-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusCOMPOSITE NANOFIBERS-
dc.subject.keywordPlusFUNCTIONALIZATION-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusCOPOLYMERS-
dc.subject.keywordPlusDISPERSION-
dc.subject.keywordAuthorCarbon nanotube-
dc.subject.keywordAuthorBoron-doping-
dc.subject.keywordAuthorPolyurethane-
dc.subject.keywordAuthorThermoelectrics-
dc.subject.keywordAuthorPhotothermal-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE