Full metadata record

DC Field Value Language
dc.contributor.authorPendyala, Prashant-
dc.contributor.authorKim, Hong Nam-
dc.contributor.authorGrewal, Harpreet S.-
dc.contributor.authorChae, Uikyu-
dc.contributor.authorYang, Sungwook-
dc.contributor.authorCho, Il-Joo-
dc.contributor.authorSong, Simon-
dc.contributor.authorYoon, Eui-Sung-
dc.date.accessioned2024-01-19T19:02:38Z-
dc.date.available2024-01-19T19:02:38Z-
dc.date.created2021-09-05-
dc.date.issued2019-10-02-
dc.identifier.issn1556-7265-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119470-
dc.description.abstractSuperhydrophobic textured surfaces are known to maintain a nonwetted state unless external stimuli are applied since they can withstand high wetting pressure. Herein, we report a new category of tunable, one-dimensional (1D) Cassie-to-Wenzel wetting transitions during evaporation, even on superhydrophobic surfaces. The transition initiates at the periphery of the evaporating drop, and the wetting transition propagates toward the center of the drop. The transitions are observed for surfaces with wetting pressures as high as similar to 7,568 Pa, which is much higher than the Laplace pressure, i.e., similar to 200 Pa. In situ high-contrast fluorescence microscopy images of the evaporating drop show that the transition is induced by preferential depinning of the air-water interface and subsequent formation of air bubbles in the cavities near the three-phase contact line. The evaporation-induced internal flow enhances the pressure within the water droplet and subsequently causes a Cassie-to-Wenzel wetting transition.-
dc.languageEnglish-
dc.publisherTAYLOR & FRANCIS INC-
dc.subjectHEAT-TRANSFER-
dc.subjectROUGH SURFACES-
dc.subjectWATER-
dc.subjectCONDENSATION-
dc.subjectDROPLETS-
dc.subjectDESIGN-
dc.titleInternal-Flow-Mediated, Tunable 1D Cassie-to-Wenzel Wetting Transition on Superhydrophobic Microcavity Surfaces during Evaporation-
dc.typeArticle-
dc.identifier.doi10.1080/15567265.2019.1660439-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING, v.23, no.4, pp.275 - 288-
dc.citation.titleNANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING-
dc.citation.volume23-
dc.citation.number4-
dc.citation.startPage275-
dc.citation.endPage288-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000484277400001-
dc.identifier.scopusid2-s2.0-85071371104-
dc.relation.journalWebOfScienceCategoryThermodynamics-
dc.relation.journalWebOfScienceCategoryEngineering, Mechanical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Characterization & Testing-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaThermodynamics-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusHEAT-TRANSFER-
dc.subject.keywordPlusROUGH SURFACES-
dc.subject.keywordPlusWATER-
dc.subject.keywordPlusCONDENSATION-
dc.subject.keywordPlusDROPLETS-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordAuthor1D wetting transition-
dc.subject.keywordAuthorCassie state-
dc.subject.keywordAuthorWenzel state-
dc.subject.keywordAuthorinternal flow-
dc.subject.keywordAuthorevaporation-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE