Full metadata record

DC Field Value Language
dc.contributor.authorJang, Segeun-
dc.contributor.authorHer, Min-
dc.contributor.authorKim, Sungjun-
dc.contributor.authorJang, Jue-Hyuk-
dc.contributor.authorChae, Ji Eon-
dc.contributor.authorChoi, Jiwoo-
dc.contributor.authorChoi, Mansoo-
dc.contributor.authorKim, Sang Moon-
dc.contributor.authorKim, Hyoung-Juhn-
dc.contributor.authorCho, Yong-Hun-
dc.contributor.authorSung, Yung-Eun-
dc.contributor.authorYoo, Sung Jong-
dc.date.accessioned2024-01-19T19:04:10Z-
dc.date.available2024-01-19T19:04:10Z-
dc.date.created2021-09-04-
dc.date.issued2019-09-25-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119558-
dc.description.abstractThe recent development of ultrathin anion exchange membranes and optimization of their operating conditions have significantly enhanced the performance of alkaline-membrane fuel cells (AMFCs); however, the effects of the membrane/electrode interface structure on the AMFC performance have not been seriously investigated thus far. Herein, we report on a high-performance AMFC system with a membrane/electrode interface of novel design. Commercially available membranes are modified in the form of well-aligned line arrays of both the anode and cathode sides by means of a solvent-assisted molding technique and sandwich-like assembly of the membrane and polydimethylsiloxane molds. Upon incorporating the patterned membranes into a single-cell system, we observe a significantly enhanced performance of up to similar to 35% compared with that of the reference membrane. The enlarged interface area and reduced membrane thickness from the line-patterned membrane/electrode interface result in improved water management, reduced ohmic resistance, and effective utilization of the catalyst. We believe that our findings can significantly contribute further advancements in AMFCs.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.subjectPOLYMER ELECTROLYTE MEMBRANE-
dc.subjectANION-EXCHANGE MEMBRANES-
dc.subjectMICROPOROUS LAYER-
dc.subjectBIPOLAR PLATES-
dc.titleMembrane/Electrode Interface Design for Effective Water Management in Alkaline Membrane Fuel Cells-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.9b08075-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.11, no.38, pp.34805 - 34811-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume11-
dc.citation.number38-
dc.citation.startPage34805-
dc.citation.endPage34811-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000488322900025-
dc.identifier.scopusid2-s2.0-85072687333-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusPOLYMER ELECTROLYTE MEMBRANE-
dc.subject.keywordPlusANION-EXCHANGE MEMBRANES-
dc.subject.keywordPlusMICROPOROUS LAYER-
dc.subject.keywordPlusBIPOLAR PLATES-
dc.subject.keywordAuthordual-side patterning-
dc.subject.keywordAuthoranion exchange membrane-
dc.subject.keywordAuthoralkaline membrane fuel cell-
dc.subject.keywordAuthormembrane-electrode assembly-
dc.subject.keywordAuthorwater management-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE