Full metadata record

DC Field Value Language
dc.contributor.authorChoi, Seung Yo-
dc.contributor.authorKim, Seonghun-
dc.contributor.authorLee, Kyung Jin-
dc.contributor.authorKim, Jin Young-
dc.contributor.authorHan, Dong Suk-
dc.contributor.authorPark, Hyunwoong-
dc.date.accessioned2024-01-19T19:04:38Z-
dc.date.available2024-01-19T19:04:38Z-
dc.date.created2021-09-05-
dc.date.issued2019-09-05-
dc.identifier.issn0926-3373-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119584-
dc.description.abstractWe present an off-grid, standalone electrocatalytic H2O2 production reaction (HPR) using carbon nanotubes (CNT) wired to hydrogen-treated TiO2 nanorod (h-TNR) arrays catalyzing the oxidation of As(III) to As(V) under simulated solar light (AM 1.5; 100 mW cm(-2)). Loading CNT onto acid-treated carbon paper (a-CP) significantly enhances the catalytic 2-electron transfer to O-2, leading to a Faradaic efficiency (FE) of similar to 100% for the HPR. To drive the HPR, the 2-electron oxidation of toxic As(III) to less toxic As(V) that accompanies the production of the proton/electron couples is achieved at an FE of > 80% using the h-TNR arrays. The high FEs of the anodic and cathodic reactions are maintained over 10 h when a direct-current voltage of 0.7 V is applied to the h-TNR photoanode and CNT/a-CP cathode pair. The coupling of a mono-Si photovoltaic array that is one-tenth the size of h-TNR photoanode to the pair of h-TNR and CNT/a-CP successfully drives the standalone operation of both reactions at the high FEs (> 90%). The surface characterization of the as-synthesized materials and the reaction mechanism are discussed in detail.-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.subjectOXYGEN REDUCTION REACTION-
dc.subjectELECTROCHEMICAL GENERATION-
dc.subjectH2O2-
dc.subjectARSENITE-
dc.subjectLAYERS-
dc.titleSolar hydrogen peroxide production on carbon nanotubes wired to titania nanorod arrays catalyzing As(III) oxidation-
dc.typeArticle-
dc.identifier.doi10.1016/j.apcatb.2019.03.060-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAPPLIED CATALYSIS B-ENVIRONMENTAL, v.252, pp.55 - 61-
dc.citation.titleAPPLIED CATALYSIS B-ENVIRONMENTAL-
dc.citation.volume252-
dc.citation.startPage55-
dc.citation.endPage61-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000469906200008-
dc.identifier.scopusid2-s2.0-85064162375-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusOXYGEN REDUCTION REACTION-
dc.subject.keywordPlusELECTROCHEMICAL GENERATION-
dc.subject.keywordPlusH2O2-
dc.subject.keywordPlusARSENITE-
dc.subject.keywordPlusLAYERS-
dc.subject.keywordAuthorArtificial photosynthesis-
dc.subject.keywordAuthorOxygen reduction reaction-
dc.subject.keywordAuthorArsenic oxidation-
dc.subject.keywordAuthorCarbon electrode-
dc.subject.keywordAuthorTiO2 nanorod arrays-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE