Full metadata record

DC Field Value Language
dc.contributor.authorLee, Milim-
dc.contributor.authorCho, Seong Won-
dc.contributor.authorYi, Yeonjin-
dc.contributor.authorLee, Suyoun-
dc.date.accessioned2024-01-19T19:04:39Z-
dc.date.available2024-01-19T19:04:39Z-
dc.date.created2021-09-05-
dc.date.issued2019-09-05-
dc.identifier.issn0925-8388-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119586-
dc.description.abstractDue to strong spin-orbit coupling (SOC), topological insulators (TIs) have attracted much interest in developing novel energy-efficient electronic devices. (Bi1-xSbx)(2)(Te1-ySey)(3) (BSTS) has been regarded as a prototypical TI because of the dominance of the surface channel in carrier transport. Nevertheless, the effect of the composition of BSTS on SOC has not been explored, which is important for the application in novel electronic devices. In this work, BSTS thin films with systematically varying compositions are examined to release composition-dependent maps for the bulk carrier density, the dominance of the surface states in carrier transport, and the strength of SOC. The maps show that the regions for optimizing each property are located in separate positions, with a narrow overlap between them. These results imply that a stringent control in composition of the BSTS thin film is required in order to take advantage of the spin-momentum-locked surface channel of TI in novel electronic devices. (C) 2019 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE SA-
dc.subjectSPIN-ORBIT INTERACTION-
dc.subjectQUANTUM COMPUTATION-
dc.subjectBAND-STRUCTURE-
dc.subjectMAGNETORESISTANCE-
dc.subjectTRANSPORT-
dc.titleComposition-dependent topological-insulator properties of epitaxial (Bi1-xSbx)(2)(Te1-ySey)(3) thin films-
dc.typeArticle-
dc.identifier.doi10.1016/j.jallcom.2019.05.351-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF ALLOYS AND COMPOUNDS, v.800, pp.81 - 87-
dc.citation.titleJOURNAL OF ALLOYS AND COMPOUNDS-
dc.citation.volume800-
dc.citation.startPage81-
dc.citation.endPage87-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000472711600012-
dc.identifier.scopusid2-s2.0-85066983877-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusSPIN-ORBIT INTERACTION-
dc.subject.keywordPlusQUANTUM COMPUTATION-
dc.subject.keywordPlusBAND-STRUCTURE-
dc.subject.keywordPlusMAGNETORESISTANCE-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordAuthorTopological insulator-
dc.subject.keywordAuthor(Bi1-xSbx)(2)(Te1-ySey)(3)-
dc.subject.keywordAuthorSpin-orbit coupling-
dc.subject.keywordAuthorSuppression of bulk conductivity-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE