A finite outlet volume correction to the time lag method: The case of hydrogen permeation through V-alloy and Pd membranes

Authors
Lee, Young-SuShim, Jae-HyeokSuh, Jin-Yoo
Issue Date
2019-09-01
Publisher
ELSEVIER SCIENCE BV
Citation
JOURNAL OF MEMBRANE SCIENCE, v.585, pp.253 - 259
Abstract
The time-lag method is a technique to derive the permeability of a membrane from the time-variant outflux of a permeate. The original formulation assumes an invariant outlet pressure; however, for practical reasons, the permeate is often contained in a finite outlet volume, and the outflux is evaluated using the increase in the outlet pressure. The outlet pressure change inevitably introduces an error in the diffusivity and in the solubility, i.e., Sieverts' constant. We demonstrate that when a time lag is obtained from the tangent line at the maximum flux, the error in the diffusivity stays within ca. 2% under usual experimental conditions. On the other hand, Sieverts' constant is underestimated to a larger degree if the outlet pressure change is not considered. To solve this problem, we propose a finite outlet volume correction to the time-lag method for the case of hydrogen permeation. The proposed scheme is an approximate solution that is valid when a linear hydrogen concentration profile is developed across the membrane. When the correction method is applied to characterize V-alloy and Pd membranes, the simulated outlet pressure from the corrected Sieverts' constant closely approximates the experimental data. The proposed method does not require any additional measurements and greatly improves the accuracy of the permeability measurement.
Keywords
TRANSIENT DIFFUSION; METAL MEMBRANES; PERMEABILITY; SEPARATION; TANTALUM; DESIGN; TRANSIENT DIFFUSION; METAL MEMBRANES; PERMEABILITY; SEPARATION; TANTALUM; DESIGN; Time-lag method; Hydrogen permeation; Metallic membrane; Finite volume correction
ISSN
0376-7388
URI
https://pubs.kist.re.kr/handle/201004/119600
DOI
10.1016/j.memsci.2019.05.048
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE