Full metadata record

DC Field Value Language
dc.contributor.authorHyun, Jong Chan-
dc.contributor.authorKwak, Jin Hwan-
dc.contributor.authorLee, Min Eui-
dc.contributor.authorChoi, Jaewon-
dc.contributor.authorKim, Jinsoo-
dc.contributor.authorKim, Seung-Soo-
dc.contributor.authorYun, Young Soo-
dc.date.accessioned2024-01-19T19:30:15Z-
dc.date.available2024-01-19T19:30:15Z-
dc.date.created2022-01-25-
dc.date.issued2019-09-
dc.identifier.issn1996-1944-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119604-
dc.description.abstractNanoporous carbon, including redox-active functional groups, can be a promising active electrode material (AEM) as a positive electrode for lithium-ion batteries owing to its high electrochemical performance originating from the host-free surface-driven charge storage process. This study examined the effects of the nanopore size on the pseudocapacitance of the nanoporous carbon materials using nanopore-engineered carbon-based AEMs (NE-C-AEMs). The pseudocapacitance of NE-C-AEMs was intensified, when the pore diameter was >= 2 nm in a voltage range of 1.0-4.8 V vs Li+/Li under the conventional carbonate-based electrolyte system, showing a high specific capacity of similar to 485 mA.h.g(-1). In addition, the NE-C-AEMs exhibited high rate capabilities at current ranges from 0.2 to 4.0 A.g(-1) as well as stable cycling behavior for more than 300 cycles. The high electrochemical performance of NE-C-AEMs was demonstrated by full-cell tests with a graphite nanosheet anode, where a high specific energy and power of similar to 345 Wh.kg(-1) and similar to 6100 W.Kg(-1), respectively, were achieved.-
dc.languageEnglish-
dc.publisherMDPI-
dc.titleIntensification of Pseudocapacitance by Nanopore Engineering on Waste-Bamboo-Derived Carbon as a Positive Electrode for Lithium-Ion Batteries-
dc.typeArticle-
dc.identifier.doi10.3390/ma12172733-
dc.description.journalClass1-
dc.identifier.bibliographicCitationMATERIALS, v.12, no.17-
dc.citation.titleMATERIALS-
dc.citation.volume12-
dc.citation.number17-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000488880300086-
dc.identifier.scopusid2-s2.0-85071874759-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusENERGY-STORAGE-
dc.subject.keywordPlusHIGH-POWER-
dc.subject.keywordPlusSUPERCAPACITORS-
dc.subject.keywordPlusCATHODE-
dc.subject.keywordPlusFUTURE-
dc.subject.keywordPlusLIMITS-
dc.subject.keywordAuthornanopore-
dc.subject.keywordAuthorpseudocapacitor-
dc.subject.keywordAuthorcathode-
dc.subject.keywordAuthorporous carbon-
dc.subject.keywordAuthorlithium-ion-
dc.subject.keywordAuthorbatteries-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE