Full metadata record

DC Field Value Language
dc.contributor.authorCha, Soonkyu-
dc.contributor.authorJeong, Shinyoung-
dc.contributor.authorKim, Byung Jun-
dc.contributor.authorKang, Seong Jun-
dc.contributor.authorKim, Young Dong-
dc.contributor.authorHan, Il Ki-
dc.date.accessioned2024-01-19T19:30:52Z-
dc.date.available2024-01-19T19:30:52Z-
dc.date.created2021-09-05-
dc.date.issued2019-09-
dc.identifier.issn1567-1739-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119640-
dc.description.abstractRed, green, blue (RGB) selective zinc oxide (ZnO) phototransistors with multi-photoactive quantum-dot (QD) channels have been fabricated by a charge-assisted layer-by-layer (LbL) patterning process. QDs were patterned as RGB pixels in multi-photoactive QD channels through the LbL process. The solution-processed ZnO film, which acts as an active-channel layer of the ZnO TFTs, is patterned via a photoinduced surface engineering method to reduce the leakage current of the ZnO TFTs. The average off-current of the patterned ZnO TFTs reduced from 10(-10) to 10(-11) A. QDs absorb visible light and generate photoelectrons, which are then transferred to the ZnO to produce photocurrents. The device shows photoresponsivity of 9.4 mA/W, 12.5, and 137 A/W to the illumination of 638, 520, and 405 nm wavelength light. Our results suggest a promising way to develop an RGB selective phototransistor that uses QDs as a visible light absorption layer and ZnO as an active channel semiconductor.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectTHIN-FILM TRANSISTORS-
dc.subjectHIGH-PERFORMANCE-
dc.subjectLOW-TEMPERATURE-
dc.subjectZNO-
dc.subjectULTRAVIOLET-
dc.subjectLAYER-
dc.subjectPLASMA-
dc.subjectTFTS-
dc.titleMulti-photoactive quantum-dot channels for zinc oxide phototransistors by a surface-engineering patterning process-
dc.typeArticle-
dc.identifier.doi10.1016/j.cap.2019.05.018-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCURRENT APPLIED PHYSICS, v.19, no.9, pp.992 - 997-
dc.citation.titleCURRENT APPLIED PHYSICS-
dc.citation.volume19-
dc.citation.number9-
dc.citation.startPage992-
dc.citation.endPage997-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.identifier.kciidART002503617-
dc.identifier.wosid000472202700006-
dc.identifier.scopusid2-s2.0-85066763967-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusTHIN-FILM TRANSISTORS-
dc.subject.keywordPlusHIGH-PERFORMANCE-
dc.subject.keywordPlusLOW-TEMPERATURE-
dc.subject.keywordPlusZNO-
dc.subject.keywordPlusULTRAVIOLET-
dc.subject.keywordPlusLAYER-
dc.subject.keywordPlusPLASMA-
dc.subject.keywordPlusTFTS-
dc.subject.keywordAuthorQuantum dots-
dc.subject.keywordAuthorZinc oxide-
dc.subject.keywordAuthorLayer-by-layer-
dc.subject.keywordAuthorPhototransistor-
dc.subject.keywordAuthorMulti-photoactive channel-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE