Full metadata record

DC Field Value Language
dc.contributor.authorFeig, Vivian Rachel-
dc.contributor.authorTran, Helen-
dc.contributor.authorLee, Minah-
dc.contributor.authorLiu, Kathy-
dc.contributor.authorHuang, Zhuojun-
dc.contributor.authorBeker, Levent-
dc.contributor.authorMackanic, David G.-
dc.contributor.authorBao, Zhenan-
dc.date.accessioned2024-01-19T19:31:09Z-
dc.date.available2024-01-19T19:31:09Z-
dc.date.created2021-09-02-
dc.date.issued2019-09-
dc.identifier.issn0935-9648-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119656-
dc.description.abstractDue to their high water content and macroscopic connectivity, hydrogels made from the conducting polymer PEDOT:PSS are a promising platform from which to fabricate a wide range of porous conductive materials that are increasingly of interest in applications as varied as bioelectronics, regenerative medicine, and energy storage. Despite the promising properties of PEDOT:PSS-based porous materials, the ability to pattern PEDOT:PSS hydrogels is still required to enable their integration with multifunctional and multichannel electronic devices. In this work, a novel electrochemical gelation ("electrogelation") method is presented for rapidly patterning PEDOT:PSS hydrogels on any conductive template, including curved and 3D surfaces. High spatial resolution is achieved through use of a sacrificial metal layer to generate the hydrogel pattern, thereby enabling high-performance conducting hydrogels and aerogels with desirable material properties to be introduced into increasingly complex device architectures.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.subjectSOFT-
dc.subjectSCAFFOLDS-
dc.subjectPOLYMERS-
dc.subjectCOPPER-
dc.titleAn Electrochemical Gelation Method for Patterning Conductive PEDOT:PSS Hydrogels-
dc.typeArticle-
dc.identifier.doi10.1002/adma.201902869-
dc.description.journalClass1-
dc.identifier.bibliographicCitationADVANCED MATERIALS, v.31, no.39-
dc.citation.titleADVANCED MATERIALS-
dc.citation.volume31-
dc.citation.number39-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000481228000001-
dc.identifier.scopusid2-s2.0-85070784845-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusSOFT-
dc.subject.keywordPlusSCAFFOLDS-
dc.subject.keywordPlusPOLYMERS-
dc.subject.keywordPlusCOPPER-
dc.subject.keywordAuthorhydrogels-
dc.subject.keywordAuthorPEDOT-
dc.subject.keywordAuthorPSS-
dc.subject.keywordAuthorsoft conductors-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE